1
|
Khabibulina LR, Garifullin BF, Aznagulov RF, Andreeva OV, Strobykina IY, Belenok MG, Voloshina AD, Abramova DF, Vyshtakalyuk AB, Lyubina AP, Amerhanova SK, Sharipova RR, Kataev VE. Synthesis, cytotoxicity and antioxidant activity of new conjugates of N-acetyl-d-glucosamine with α-aminophosphonates. Carbohydr Res 2024; 541:109146. [PMID: 38788561 DOI: 10.1016/j.carres.2024.109146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
A series of the first conjugates of N-acetyl-d-glucosamine with α-aminophosphonates was synthesized using the Kabachnik-Fields reaction, the Pudovik reaction, a copper(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC) and evaluated for the in vitro cytotoxicity against human cancer cell lines M - HeLa, HuTu-80, A549, PANC-1, MCF-7, T98G and normal lung fibroblast cells WI-38. The tested conjugates, with exception of compound 21b, considered as a lead compound, were either inactive against the used cancer cells or showed moderate cytotoxicity in the range of IC50 values 33-80 μM. The lead compound 21b, being non cytotoxic against normal human cells WI-38 (IC50 = 90 μM), demonstrated good activity (IC50 = 17 μM) against breast adenocarcinoma cells (MCF-7) which to be 1.5 times higher than the activity of the used reference anticancer drug tamoxifen (IC50 = 25.0 μM). A flexible receptor molecular docking simulation showed that the cytotoxicity of the synthesized conjugates of N-acetyl-d-glucosamine with α-aminophosphonates against breast adenocarcinoma MCF-7 cell line is due to their ability to inhibit EGFR kinase domain. In addition, it was found that conjugates 22a and 22b demonstrated antioxidant activity that was not typical for α-aminophosphonates.
Collapse
Affiliation(s)
- Leysan R Khabibulina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation.
| | - Bulat F Garifullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation
| | - Ravil F Aznagulov
- Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation
| | - Olga V Andreeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Dinara F Abramova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation
| | - Alexandra B Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Syumbelya K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Radmila R Sharipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
2
|
Yang Y, Zhao L, Wang T, Zheng X, Wu Y. Biological activity and structural modification of isosteviol over the past 15 years. Bioorg Chem 2024; 143:107074. [PMID: 38176378 DOI: 10.1016/j.bioorg.2023.107074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Isosteviol is a tetracyclic diterpenoid obtained by hydrolysis of stevioside. Due to its unique molecular skeleton and extensive pharmacological activities, isosteviol has attracted more and more attention from researchers. This review summarized the structural modification, pharmacological activity and microbial transformation of isosteviol from 04/2008 to 10/2023. In addition, the research history, structural characterization, and pharmacokinetics of isosteviol were also briefly reviewed. This review aims to provide useful literature resources and inspirations for the exploration of diterpenoid drugs.
Collapse
Affiliation(s)
- Youfu Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Lijun Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tongsheng Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| | - Ya Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| |
Collapse
|
3
|
Muravev AA, Voloshina AD, Sapunova AS, Gabdrakhmanova FB, Lenina OA, Petrov KA, Shityakov S, Skorb EV, Solovieva SE, Antipin IS. Calix[4]arene-pyrazole conjugates as potential cancer therapeutics. Bioorg Chem 2023; 139:106742. [PMID: 37480816 DOI: 10.1016/j.bioorg.2023.106742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Tumor selectivity is yet a challenge in chemotherapy-based cancer treatment. A series of calixarenes derivatized at the lower rim with 3-phenyl-1H-pyrazole units with variable upper-rim substituent and conformations of macrocyclic core, alkyl chain length between heterocycle and core, as well as phenolic monomer (5-(4-tert-butylphenyloxy)methoxy-3-phenyl-1H-pyrazole) have been synthesized and characterized in a range of therapeutically relevant cellular models (M-HeLa, MCF7, A-549, PC3, Chang liver, and Wi38) from different target organs/systems. Specific cytotoxicity for M-HeLa cells has been observed in tert-butylcalix[4]arene pyrazoles in 1,3-alternate (compound 7b) and partial cone (compound 7c) conformations with low mutagenicity and haemotoxicity and in vivo toxicity in mice. Compounds 7b,c have induced mitochondrial pathway of apoptosis of M-HeLa cells through caspase-9 activation preceded by the cell cycle arrest at G0/G1 phase. A concomitant overexpression of DNA damage markers in pyrazole-treated M-HeLa cells suggests that calixarene pyrazoles target DNA, which was supported by the presence of interactions between calixarenes and ctDNA at the air-water interface.
Collapse
Affiliation(s)
- Anton A Muravev
- Infochemistry Scientific Center, ITMO University, Lomonosov Str. 9, 191002 Saint Petersburg, Russia; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia.
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Anastasia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Farida B Gabdrakhmanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Oksana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Lomonosov Str. 9, 191002 Saint Petersburg, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Lomonosov Str. 9, 191002 Saint Petersburg, Russia
| | - Svetlana E Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Igor S Antipin
- Kazan Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| |
Collapse
|
4
|
Heisig J, Heise NV, Hoenke S, Ströhl D, Csuk R. The Finally Rewarding Search for A Cytotoxic Isosteviol Derivative. Molecules 2023; 28:4951. [PMID: 37446613 DOI: 10.3390/molecules28134951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Acid hydrolysis of stevioside resulted in a 63% yield of isosteviol (1), which served as a starting material for the preparation of numerous amides. These compounds were tested for cytotoxic activity, employing a panel of human tumor cell lines, and almost all amides were found to be non-cytotoxic. Only the combination of isosteviol, a (homo)-piperazinyl spacer and rhodamine B or rhodamine 101 unit proved to be particularly suitable. These spacered rhodamine conjugates exhibited cytotoxic activity in the sub-micromolar concentration range. In this regard, the homopiperazinyl-spacered derivatives were found to be better than those compounds with piperazinyl spacers, and rhodamine 101 conjugates were more cytotoxic than rhodamine B hybrids.
Collapse
Affiliation(s)
- Julia Heisig
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Niels V Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Dieter Ströhl
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
5
|
The Formation of Morphologically Stable Lipid Nanocarriers for Glioma Therapy. Int J Mol Sci 2023; 24:ijms24043632. [PMID: 36835043 PMCID: PMC9964330 DOI: 10.3390/ijms24043632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cerasomes are a promising modification of liposomes with covalent siloxane networks on the surface that provide outstanding morphological stability while maintaining all the useful traits of liposomes. Herein, thin film hydration and ethanol sol injection methods were utilized to produce cerasomes of various composition, which were then evaluated for the purpose of drug delivery. The most promising nanoparticles obtained by the thin film method were studied closely using MTT assay, flow cytometry and fluorescence microscopy on T98G glioblastoma cell line and modified with surfactants to achieve stability and the ability to bypass the blood-brain barrier. An antitumor agent, paclitaxel, was loaded into cerasomes, which increased its potency and demonstrated increased ability to induce apoptosis in T98G glioblastoma cell culture. Cerasomes loaded with fluorescent dye rhodamine B demonstrated significantly increased fluorescence in brain slices of Wistar rats compared to free rhodamine B. Thin film hydration with Tween 80 addition was established as a more reliable and versatile method for cerasome preparation. Cerasomes increased the antitumor action of paclitaxel toward T98G cancer cells by a factor of 36 and were able to deliver rhodamine B over the blood-brain barrier in rats.
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
7
|
Silica-Supported Assemblage of CuII Ions with Carbon Dots for Self-Boosting and Glutathione-Induced ROS Generation. COATINGS 2022. [DOI: 10.3390/coatings12010097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present work introduces coordinative binding of CuII ions with both amino-functionalized silica nanoparticles (SNs) and green-emitting carbon dots (CDs) as the pregrequisite for the CuII-assisted self-assembly of the CDs at the surface of the SNs. The produced composite SNs exhibit stable in time stimuli-responsive green fluorescence derived from the CuII-assisted assemblage of CDs. The fluorescence response of the composite SNs is sensitive to the complex formation with glutathione (GSH), enabling them to detect it with the lower limit of detection of 0.15 μM. The spin-trap-facilitated electron spin resonance technique indicated that the composite SNs are capable of self-boosting generation of ROS due to CuII→CuI reduction by carbon in low oxidation states as a part of the CDs. The intensity of the ESR signals is enhanced under the heating to 38 °C. The intensity is suppressed at the GSH concentration of 0.35 mM but is enhanced at 1.0 mM of glutathione, while it is suppressed once more at the highest intracellular concentration level of GSH (10 mM). These tendencies reveal the concentrations optimal for the scavenger or reductive potential of GSH. Flow cytometry and fluorescence and confocal microscopy methods revealed efficient cell internalization of SNs-NH2-CuII-CDs comparable with that of “free” CDs.
Collapse
|
8
|
Mohamadzadeh M, Zarei M. Anticancer activity and evaluation of apoptotic genes expression of 2-azetidinones containing anthraquinone moiety. Mol Divers 2021; 25:2429-2439. [PMID: 32944866 DOI: 10.1007/s11030-020-10142-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/05/2020] [Indexed: 01/07/2023]
Abstract
Nowadays, one of the principal causes of death in the world is cancer. A series of 2-azetidinones containing anthraquinone moiety with various substituents were synthesized using [2 + 2] ketene-imine cycloaddition (Staudinger ketene-imine cycloaddition), and their cytotoxicity against some human cancer and normal cell lines was evaluated. Some of these hybrid compounds showed moderate to significant cytotoxicity against breast carcinoma (MCF7), colon carcinoma (HCT116), prostate carcinoma (PC3), and neuroblastoma (SKNMC) cell lines via MTT assay. Surprisingly, hybrid 4gh with the best anticancer activity demonstrated very good antibacterial and antifungal activities. This compound was selected to study to test on human fibroblast (Hu02) normal cell and comparison with doxorubicin. While 2-azetidinone 4gh represented similar cytotoxicity against cancer cell lines compared to doxorubicin, the 2-azetidinone demonstrated lower cytotoxicity against human fibroblast (Hu02) than doxorubicin. Further real-time PCR investigation displayed the expression of Bcl-xl, KI-67, TPX2 and BAX genes were significantly increased or decreased as desired in the cancer cell lines studied by treatment with doxorubicin or 2-azetidinone-anthraquinone 4gh. Molecular docking studies represented that hybrid 4gh strongly fitted the active site of topoisomerase II (PDB 4G0V) with hydrogen bond and hydrophobic interactions.
Collapse
Affiliation(s)
- Masoud Mohamadzadeh
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maaroof Zarei
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, 71961, Iran.
| |
Collapse
|
9
|
Tailoring of silica nanoarchitecture to optimize Cu(2−x)S based image-guided chemodynamic therapy agent. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Kuznetsova DA, Vasileva LA, Gaynanova GA, Pavlov RV, Sapunova AS, Voloshina AD, Sibgatullina GV, Samigullin DV, Petrov KA, Zakharova LY, Sinyashin OG. Comparative study of cationic liposomes modified with triphenylphosphonium and imidazolium surfactants for mitochondrial delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Valeeva F, Karimova T, Pavlov R, Bakhtiyarov D, Sapunova A, Ivshin K, Kataeva O, Gaynanova G, Syakaev V, Voloshina A, Galkina I, Latypov S, Zakharova L. Introduction of isothiuronium surfactant series: Synthesis, structure-dependent aggregation overview and biological activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Andreeva OV, Garifullin BF, Sharipova RR, Strobykina IY, Sapunova AS, Voloshina AD, Belenok MG, Dobrynin AB, Khabibulina LR, Kataev VE. Glycosides and Glycoconjugates of the Diterpenoid Isosteviol with a 1,2,3-Triazolyl Moiety: Synthesis and Cytotoxicity Evaluation. JOURNAL OF NATURAL PRODUCTS 2020; 83:2367-2380. [PMID: 32786882 DOI: 10.1021/acs.jnatprod.0c00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several glycoconjugates of the diterpenoid isosteviol (16-oxo-ent-beyeran-19-oic acid) with a 1,2,3-triazolyl moiety were synthesized, and their cytotoxicity was evaluated against some human cancer and normal cell lines. Most of the synthesized compounds demonstrated weak inhibitory activities against the M-HeLa and MCF-7 human cancer cell lines. Three lead compounds, 54, 56 and 57, exhibited high selective cytotoxic activity against M-HeLa cells (IC50 = 1.7-1.9 μM) that corresponded to the activity of the anticancer drug doxorubicin (IC50 = 3.0 μM). Moreover, the lead compounds were not cytotoxic with respect to a Chang liver human normal cell line (IC50 > 100 μM), whereas doxorubicin was cytotoxic to this cell line (IC50 = 3.0 μM). It was found that cytotoxic activity of the lead compounds is due to induction of apoptosis proceeding along the mitochondrial pathway. The present findings suggest that 1,2,3-triazolyl-ring-containing glycoconjugates of isosteviol are a promising scaffold for the design of novel anticancer agents.
Collapse
Affiliation(s)
- Olga V Andreeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Bulat F Garifullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Radmila R Sharipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Anastasiya S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Alexey B Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Leysan R Khabibulina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| |
Collapse
|