1
|
El-Readi MZ, Abdulkarim MA, Abdellatif AAH, Elzubeir ME, Refaat B, Althubiti M, Almaimani RA, Mukhtar MH, Al-Moraya IS, Eid SY. Doxorubicin-sanguinarine nanoparticles: formulation and evaluation of breast cancer cell apoptosis and cell cycle. Drug Dev Ind Pharm 2024:1-15. [PMID: 38180322 DOI: 10.1080/03639045.2024.2302557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Therapeutic resistance fails cancer treatment. Drug-nanoparticle combinations overcome resistance. Sanguinarine-conjugated nanoparticles may boost sanguinarine's anticancer effects. METHODS Sanguinarine, HPMC-NPs, and doxorubicin were tested on Adriamycin-resistant MCF-7/ADR breast cancer cells, parent-sensitive MCF-7, and MCR-5 normal cells (DX). RESULTS Regular distribution, 156 nm diameter, <1 μm average size, 100% intensity-SN is therapeutic. Furthermore, the obtained NPs showed PDI = 0.145, zeta-potential=-37.6, and EE%=90.5%. DX sensitized MCF-7 cells (IC50 = 1.4 μM) more than MCF-7/ADR cells (IC50 = 27 μM) with RR = 19.3. SA and SN were more toxic to MCF-7/ADR cells (overexpressed with P-gp) than their sensitive parent MCF-7 cells (IC50 = 4 μM, RR = 0.6 and 0.6 μM, RR = 0.7). MCR-5 normal lung cells were more resistant to SA (IC50 = 7.2 μM) and SN (IC50 = 1.6 μM) with a selection index > 2. Synergistic cytotoxic interactions reduced the IC50 from 27 μM to 1.6 (CI = 0.1) and 0.9 (CI = 0.4) after DX and nontoxic dosages (IC20) of SA and SN. DS and SN killed 27.1% and 39.4% more cells than DX (7.7%), SA (4.9%), SN (5.5%), or untreated control (0.3%). DS and DSN lowered CCND1 and survival in MCF-7/ADR cells while raising p21 and Casp3 gene and protein expression. CONCLUSIONS Cellular and molecular studies suggested adjuvant chemosensitizers SA and SN to reverse MDR in breast cancer cells.
Collapse
Affiliation(s)
- Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Majed Abdurhman Abdulkarim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Sulaiman Alhabab Hospital, Alqassim, Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mohamed E Elzubeir
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad Adnan Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Hasan Mukhtar
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Issa Saad Al-Moraya
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Forensic Medicine & Toxicology Center, Abha, Saudi Arabia
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Tang Y, Xu X, Li J, Deng L, Mu S. Synthesis and Antileukemia Activity Evaluation of Benzophenanthridine Alkaloid Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123934. [PMID: 35745057 PMCID: PMC9227418 DOI: 10.3390/molecules27123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Thirty-three benzophenanthridine alkaloid derivatives (1a–1u and 2a–2l) were synthesized, and their cytotoxic activities against two leukemia cell lines (Jurkat Clone E6-1 and THP-1) were evaluated in vitro using a Cell Counting Kit-8 (CCK-8) assay. Nine of these derivatives (1i–l, 2a, and 2i–l) with IC50 values in the range of 0.18–7.94 μM showed significant inhibitory effects on the proliferation of both cancer cell lines. Analysis of the primary structure–activity relationships revealed that different substituent groups at the C-6 position might have an effect on the antileukemia activity of the corresponding compounds. In addition, the groups at the C-7 and C-8 positions could influence the antileukemia activity. Among these compounds, 2j showed the strongest in vitro antiproliferative activity against Jurkat Clone E6-1 and THP-1 cells with good IC50 values (0.52 ± 0.03 μM and 0.48 ± 0.03 μM, respectively), slightly induced apoptosis, and arrested the cell-cycle, all of which suggests that compound 2j may represent a potentially useful start point to undergo further optimization toward a lead compound.
Collapse
Affiliation(s)
- Yaling Tang
- College of Pharmacy, Guizhou University, Guiyang 550025, China;
| | - Xinglian Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (X.X.); (J.L.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Jiang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (X.X.); (J.L.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Lulu Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (X.X.); (J.L.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (L.D.); (S.M.)
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (X.X.); (J.L.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
- Correspondence: (L.D.); (S.M.)
| |
Collapse
|