1
|
Chernyshov SV, Masulis IS, Mikoulinskaia GV. From DNA to lytic proteins: transcription and translation of the bacteriophage T5 holin/endolysin operon. World J Microbiol Biotechnol 2024; 40:256. [PMID: 38926173 DOI: 10.1007/s11274-024-04063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The analysis of transcriptional activity of the bacteriophage T5 hol/endo operon conducted in the paper revealed a strong constitutive promoter recognized by E. coli RNA polymerase and a transcription initiation point of the operon. It was also shown that the only translational start codon for holin was a non-canonical TTG. Translation initiation regions (TIRs) of both genes of the operon (hol and endo) were further analyzed using chimeric constructs, in which parts of the hol/endo regulatory regions were fused with the gene of a reporter protein (EGFP). It was found that TIR of hol was 20 times less effective than that of endo. As it turned out, the level of EGFP production was influenced by the composition of the constructs and the type of the hol start codon. Apparently, the translational suppression of holin's accumulation and posttranslational activation of endolysin by Ca2+ are the main factors ensuring the proper timing of the host cell lysis by bacteriophage T5. The approach based on the use of chimeric constructs proposed in the paper can be recommended for studying other native or artificial operons of any complexity: analyzing the impacts of separate DNA regions, as well as their coupled effect, on the processes of transcription and translation of recombinant protein(s).
Collapse
Affiliation(s)
- Sergei V Chernyshov
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, Moscow region, Pushchino, Moscow region, 142290, Russia
| | - Irina S Masulis
- Institute of Cell Biophysics RAS PBC RAS, Institutskaya ul., 3, Pushchino, Pushchino, Moscow region, 142290, Russia
| | - Galina V Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, Moscow region, Pushchino, Moscow region, 142290, Russia.
| |
Collapse
|
2
|
Kutyshenko VP, Mikoulinskaia GV, Prokhorov DA, Molochkov NV, Yegorov AY, Uversky VN. On the roles of calcium and zinc ions in the formation of a catalytically active form of the metalloenzyme, l-alanyl-d-glutamate peptidase of the bacteriophage T5 (EndoT5). Int J Biol Macromol 2020; 164:2711-2716. [DOI: 10.1016/j.ijbiomac.2020.08.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022]
|
3
|
Shadrin VS, Machulin AV, Dorofeeva LV, Chernyshov SV, Mikoulinskaia GV. Lysis of cells of diverse bacteria by l,d-peptidases of Escherichia coli bacteriophages RB43, RB49 and T5. J Appl Microbiol 2020; 130:1902-1912. [PMID: 33107183 DOI: 10.1111/jam.14910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 01/03/2023]
Abstract
AIMS The objective of this work was to study the antibacterial specificity and antibacterial effect of endolysins isolated from colibacteriophages RB43, RB49 and T5-as manifested on the exponential and stationary cell cultures of diverse bacteria depending on the growth stage, structure of peptidoglycan (PG) and antibiotic resistance. METHODS AND RESULTS Enzyme activity was assayed by the spectrophotometric method. Antimicrobial activity was estimated by the number of colony forming units (CFUs), with the results represented as logarithmic units. Morphological examination of bacterial cells was conducted using phase-contrast and scanning electron microscopy. The enzymes EndoT5, endolysin of bacteriophage T5, EndoRB43, endolysin of bacteriophage RB43 and EndoRB49, endolysin of bacteriophage RB49 turned out to be much less bacteriospecific than the corresponding Escherichia coli phages; they lysed bacteria of the genera Bacillus, Cellulomonas and Sporosarcina, whose PGs had different structures (A1γ, A4α and A4β) and chemical modifications (amidation). The specific lytic activity of phage enzymes was independent of the antibiotic resistance of bacterial cells and was higher when the cells were in the exponential, rather than stationary, growth phase. The analysis of morphological changes showed that the intermediate stage of the endolysin-induced lysis of bacterial cells was the formation of spheroplasts and protoplasts. CONCLUSIONS Endolysins of colibacteriophages RB49, RB43 and T5 have a wide spectrum of antibacterial action, which includes a number of diverse micro-organisms with different PG structures. SIGNIFICANCE AND IMPACT OF THE STUDY This is a study of the bacterial selectivity of enzymes degrading bacterial cell wall in relation to the chemical structure of PG. It is shown that endolysins of bacteriophages RB49 and RB43 efficiently lyse cell wall of Gram-positive bacteria of the genus Bacillus and Gram-negative bacteria of the genus Pseudomonas (including an antibiotic-resistant strain). The number of bacterial cells is reduced by 3-6 orders of magnitude, which indicates good prospects for using these enzymes in biotechnology.
Collapse
Affiliation(s)
- V S Shadrin
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - A V Machulin
- Skryabin's Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the, Russian Academy of Sciences', Pushchino, Russia
| | - L V Dorofeeva
- Skryabin's Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the, Russian Academy of Sciences', Pushchino, Russia
| | - S V Chernyshov
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - G V Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| |
Collapse
|
4
|
Kutyshenko VP, Prokhorov DA, Mikoulinskaia GV, Molochkov NV, Yegorov AY, Paskevich SI, Uversky VN. Comparative analysis of the active sites of orthologous endolysins of the Escherichia lytic bacteriophages T5, RB43, and RB49. Int J Biol Macromol 2020; 166:1096-1105. [PMID: 33159938 DOI: 10.1016/j.ijbiomac.2020.10.264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
The methods of solution NMR, circular dichroism (CD), and differential scanning calorimetry (DSC) were used to study two zinc-containing L-alanyl-D-glutamate peptidases - endolysins of the pseudo T-even myoviruses RB43 and RB49 (EndoRB43 and EndoRB49, respectively), which are orthologous to the EndoT5, which is a zinc-containing L-alanyl-D-glutamate peptidase of the T5 siphovirus. The spatial conservation of the Zn2+-binding sites for the enzymes EndoT5, EndoRB43, and EndoRB49 was established, and the key role of Zn2+ ions in the stabilization of the spatial structures of these three peptidases was confirmed. We are showing here that the binding of the Zn2+ ion in the active center of EndoRB49 peptidase causes conformational rearrangements similar to those observed in the EndoT5 peptidase upon binding of Zn2+ and Ca2+ ions and lead to the formation of a catalytically active form of the enzyme. Therefore, the binding of the Zn2+ ion to the active site of EndoRB49 peptidase is a necessary and sufficient condition for functioning of this protein.
Collapse
Affiliation(s)
- Victor P Kutyshenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Dmitry A Prokhorov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Galina V Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Nikolai V Molochkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Alexander Y Yegorov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Svetlana I Paskevich
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir N Uversky
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
5
|
Srinivasan R, Chaitanyakumar A, Subramanian P, Mageswari A, Gomathi A, Aswini V, Sankar AM, Ramya M, Gothandam KM. Recombinant engineered phage-derived enzybiotic in Pichia pastoris X-33 as whole cell biocatalyst for effective biocontrol of Vibrio parahaemolyticus in aquaculture. Int J Biol Macromol 2020; 154:1576-1585. [DOI: 10.1016/j.ijbiomac.2019.11.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
|
6
|
Li HF, Wang XF, Tang H. Predicting Bacteriophage Enzymes and Hydrolases by Using Combined Features. Front Bioeng Biotechnol 2020; 8:183. [PMID: 32266225 PMCID: PMC7105632 DOI: 10.3389/fbioe.2020.00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Bacteriophage is a type of virus that could infect the host bacteria. They have been applied in the treatment of pathogenic bacterial infection. Phage enzymes and hydrolases play the most important role in the destruction of bacterial cells. Correctly identifying the hydrolases coded by phage is not only beneficial to their function study, but also conducive to antibacteria drug discovery. Thus, this work aims to recognize the enzymes and hydrolases in phage. A combination of different features was used to represent samples of phage and hydrolase. A feature selection technique called analysis of variance was developed to optimize features. The classification was performed by using support vector machine (SVM). The prediction process includes two steps. The first step is to identify phage enzymes. The second step is to determine whether a phage enzyme is hydrolase or not. The jackknife cross-validated results showed that our method could produce overall accuracies of 85.1 and 94.3%, respectively, for the two predictions, demonstrating that the proposed method is promising.
Collapse
Affiliation(s)
- Hong-Fei Li
- Department of Pathophysiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, China.,School of Computer and Information Engineering, Henan Normal University, Henan, China
| | - Xian-Fang Wang
- School of Computer and Information Engineering, Henan Normal University, Henan, China
| | - Hua Tang
- Department of Pathophysiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Jończyk-Matysiak E, Łodej N, Kula D, Owczarek B, Orwat F, Międzybrodzki R, Neuberg J, Bagińska N, Weber-Dąbrowska B, Górski A. Factors determining phage stability/activity: challenges in practical phage application. Expert Rev Anti Infect Ther 2019; 17:583-606. [PMID: 31322022 DOI: 10.1080/14787210.2019.1646126] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Phages consist of nucleic acids and proteins that may lose their activity under different physico-chemical conditions. The production process of phage formulations may decrease phage infectivity. Ingredients present in the preparation may influence phage particles, although preparation and storage conditions may also cause variations in phage titer. Significant factors are the manner of phage application, the patient's immune system status, the type of medication being taken, and diet. Areas covered: We discuss factors determining phage activity and stability, which is relevant for the preparation and application of phage formulations with the highest therapeutic efficacy. Our article should be helpful for more insightful implementation of clinical trials, which could pave the way for successful phage therapy. Expert opinion: The number of naturally occurring phages is practically unlimited and phages vary in their susceptibility to external factors. Modern methods offer engineering techniques which should lead to enhanced precision in phage delivery and anti-bacterial activity. Recent data suggesting that phages may also be used in treating nonbacterial infections as well as anti-inflammatory and immunomodulatory agents add further weight to such studies. It may be anticipated that different phage activities could have varying susceptibility to factors determining their actions.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Norbert Łodej
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Dominika Kula
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Barbara Owczarek
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Filip Orwat
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Ryszard Międzybrodzki
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,b Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw , Warsaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Joanna Neuberg
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Natalia Bagińska
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Beata Weber-Dąbrowska
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Andrzej Górski
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,b Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw , Warsaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| |
Collapse
|
8
|
Kutyshenko VP, Sharapov MG, Uversky VN. Can a retro-polypeptide fold into a globule? J Biomol Struct Dyn 2019; 38:2763-2767. [PMID: 31232183 DOI: 10.1080/07391102.2019.1635045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Victor P Kutyshenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Science, Pushchino, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of Russian Academy of Science, Pushchino, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|