1
|
Mikhailov A, Deresz K, Tiognou AT, Kostin G, Lassalle-Kaiser B, Schaniel D. Electronic structure of light-induced nitrosyl linkage isomers revealed by X-ray absorption spectroscopy at Ru L 3,2-edges. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125053. [PMID: 39241399 DOI: 10.1016/j.saa.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
X-ray absorption spectroscopy (XAS) is a powerful tool for examining changes of the electronic and molecular structure following light-induced excitation of a molecule. Specifically, this method can be applied to investigate the ground (GS, RuNO) and metastable states (MS1, RuON and MS2, Ruη2(NO)) of the nitrosyl ligand (NO), which differ in their coordination mode to the metal. In this work, we report for the first time experimental and theoretical (DFT) Ru L3,2-edge XA spectra for the octahedral complex trans-[RuNOPy4F](ClO4)2 (1, Py = pyridine) in both ground and metastable states. The transition from GS to MS1 using 420 nm light excitation leads to a significant downshift of the 2p → LUMO(+1) peaks by about 0.5-0.8 eV, attributed to the destabilisation of 2p orbitals and stabilization of LUMO(+1). Subsequent irradiation of MS1 at 920 nm produces isomer MS2, for which even greater stabilization of LUMO occurs, though without a significant change in 2p energy. The change in 2p energy is attributed to a variation in the charge on the Ru atom after NO isomerization, while LUMO(+1) stabilization is related to changes in the Ru(NO) bond length and the composition of this orbital.
Collapse
Affiliation(s)
- Artem Mikhailov
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France.
| | - Krystyna Deresz
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France; Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Gennadiy Kostin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | | | - Dominik Schaniel
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France
| |
Collapse
|
2
|
Grin IR, Petrova DV, Endutkin AV, Ma C, Yu B, Li H, Zharkov DO. Base Excision DNA Repair in Plants: Arabidopsis and Beyond. Int J Mol Sci 2023; 24:14746. [PMID: 37834194 PMCID: PMC10573277 DOI: 10.3390/ijms241914746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.
Collapse
Affiliation(s)
- Inga R. Grin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Daria V. Petrova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Harbin 150080, China; (C.M.); (B.Y.); (H.L.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Harbin 150080, China
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; (D.V.P.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Kostin GA, Tolstikov SE, Kuratieva NV, Nadolinny VA, Ovcharenko VI. FIRST EXAMPLE OF RUTHENIUM NITROSO COMPLEXES WITH A NITROXYL RADICAL AS A LIGAND. J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
4
|
Structural, spectral, and photoreactivity properties of mono and polymetallated-2,2′-bipyridine ruthenium(II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Stepanenko I, Mizetskyi P, Orlowska E, Bučinský L, Zalibera M, Vénosová B, Clémancey M, Blondin G, Rapta P, Novitchi G, Schrader W, Schaniel D, Chen YS, Lutz M, Kožíšek J, Telser J, Arion VB. The Ruthenium Nitrosyl Moiety in Clusters: Trinuclear Linear μ-Hydroxido Magnesium(II)-Diruthenium(II), μ 3-Oxido Trinuclear Diiron(III)-Ruthenium(II), and Tetranuclear μ 4-Oxido Trigallium(III)-Ruthenium(II) Complexes. Inorg Chem 2022; 61:950-967. [PMID: 34962391 PMCID: PMC8767547 DOI: 10.1021/acs.inorgchem.1c03011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/28/2022]
Abstract
The ruthenium nitrosyl moiety, {RuNO}6, is important as a potential releasing agent of nitric oxide and is of inherent interest in coordination chemistry. Typically, {RuNO}6 is found in mononuclear complexes. Herein we describe the synthesis and characterization of several multimetal cluster complexes that contain this unit. Specifically, the heterotrinuclear μ3-oxido clusters [Fe2RuCl4(μ3-O)(μ-OMe)(μ-pz)2(NO)(Hpz)2] (6) and [Fe2RuCl3(μ3-O)(μ-OMe)(μ-pz)3(MeOH)(NO)(Hpz)][Fe2RuCl3(μ3-O)(μ-OMe)(μ-pz)3(DMF)(NO)(Hpz)] (7·MeOH·2H2O) and the heterotetranuclear μ4-oxido complex [Ga3RuCl3(μ4-O)(μ-OMe)3(μ-pz)4(NO)] (8) were prepared from trans-[Ru(OH)(NO)(Hpz)4]Cl2 (5), which itself was prepared via acidic hydrolysis of the linear heterotrinuclear complex {[Ru(μ-OH)(μ-pz)2(pz)(NO)(Hpz)]2Mg} (4). Complex 4 was synthesized from the mononuclear Ru complexes (H2pz)[trans-RuCl4(Hpz)2] (1), trans-[RuCl2(Hpz)4]Cl (2), and trans-[RuCl2(Hpz)4] (3). The new compounds 4-8 were all characterized by elemental analysis, ESI mass spectrometry, IR, UV-vis, and 1H NMR spectroscopy, and single-crystal X-ray diffraction, with complexes 6 and 7 being characterized also by temperature-dependent magnetic susceptibility measurements and Mössbauer spectroscopy. Magnetometry indicated a strong antiferromagnetic interaction between paramagnetic centers in 6 and 7. The ability of 4 and 6-8 to form linkage isomers and release NO upon irradiation in the solid state was investigated by IR spectroscopy. A theoretical investigation of the electronic structure of 6 by DFT and ab initio CASSCF/NEVPT2 calculations indicated a redox-noninnocent behavior of the NO ancillary ligand in 6, which was also manifested in TD-DFT calculations of its electronic absorption spectrum. The electronic structure of 6 was also studied by an X-ray charge density analysis.
Collapse
Affiliation(s)
- Iryna Stepanenko
- University
of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Pavlo Mizetskyi
- University
of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Ewelina Orlowska
- University
of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Lukáš Bučinský
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Michal Zalibera
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Barbora Vénosová
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Radlinského
9, SK-81237 Bratislava, Slovak Republic
- Department
of Physics, Faculty of Science, University
of Ostrava, 30. dubna
22, 70103 Ostrava, Czech Republic
| | - Martin Clémancey
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, LCBM, F-38000 Grenoble, France
| | - Geneviève Blondin
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, LCBM, F-38000 Grenoble, France
| | - Peter Rapta
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | | | - Wolfgang Schrader
- MPI
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | - Yu-Sheng Chen
- NSF’s
ChemMATCARS, The University of Chicago, Lemont, Illinois 60439, United States
| | - Martin Lutz
- Structural
Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jozef Kožíšek
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Joshua Telser
- Department
of Biological, Physical and Health Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605, United
States
| | - Vladimir B. Arion
- University
of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
6
|
Mikhailov A, Kostin G, Schaniel D. The influence of trans-ligand to NO on the thermal stability of photoinduced side-bond coordinated linkage isomer. NEW J CHEM 2022. [DOI: 10.1039/d2nj01388f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of trans-to NO ligand (X) on the thermal stability of transient side-on coordinated nitrosyl linkage isomer (MS2) is investigated in a series of trans-[RuNOPy4X](PF6)2 (X = F- (RuF),...
Collapse
|
7
|
Benniston AC, Zeng L. Recent Advances in Photorelease Complexes for Therapeutic Applications”. Dalton Trans 2022; 51:4202-4212. [DOI: 10.1039/d2dt00254j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photorelease complexes represent a class of agents for which UV-visible light triggers the expulsion of a specfic molecule that is intrinsically part of the inner coordination sphere or held in...
Collapse
|
8
|
Stepanenko I, Zalibera M, Schaniel D, Telser J, Arion V. Ruthenium-nitrosyl complexes as NO-releasing molecules and potential anticancer drugs. Dalton Trans 2022; 51:5367-5393. [DOI: 10.1039/d2dt00290f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of new types of mono- and polynuclear ruthenium nitrosyl complexes is driving progress in the field of NO generation for a variety of applications. Light-induced Ru-NO bond dissociation...
Collapse
|
9
|
Mikhailov AA, Woike T, Gansmüller A, Schaniel D, Kostin GA. Photoinduced linkage isomers in a model ruthenium nitrosyl complex: Identification and assignment of vibrational modes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120217. [PMID: 34343843 DOI: 10.1016/j.saa.2021.120217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Photoinduced NO-linkage isomers were investigated in the solid state of labelled trans-[Ru(14/15NO)(py4)F](ClO4)2 complex by combined IR-spectroscopy and DFT calculations. Based on the experimental data and the DFT calculations of this isotopically labelled 14/15NO nitrosyl compound, we present a complete assignment of the vibrational bands of three nitrosyl linkage isomers in a range from 4000 to 200 cm-1. The calculated IR-spectra match well with the experimental data allowing reliable assignment of the vibrational bands. The structural change from the Ru-NO (GS) to the Ru-ON (MS1) and Ru-η2-(NO) (MS2) linkage configuration leads to the downshift of the ν(NO) and ν(Ru-(NO)) bands, and a corresponding increase of the energy of the ν(Ru-F) band. The shift of the bands corresponds to the change of the Ru-(NO) and Ru-F bond lengths: increase of the Ru-(NO) bond length leads to the decrease of the energy of the ν(Ru-(NO)) band; decrease of the Ru-F bond length leads to the increase of the energy of the ν(Ru-F) band. These observations can be extrapolated to the family of related nitrosyl complexes and therefore be used for the qualitative prediction of the Ru-(NO) and Ru-Ltrans-to-NO bond lengths of different linkage isomers in the framework of one complex. While the formation of linkage isomers is a reversible process, long-time irradiation sometimes induces irreversible reactions such as the release of NO. Here, we show that the photolysis of trans-[Ru(14/15NO)(py4)F](ClO4)2 in KBr pellets may lead to the release of nitrous oxide N2O, conceivably through the formation of a {Ru-(κ2-ONNO)} intermediate.
Collapse
Affiliation(s)
- Artem A Mikhailov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Theo Woike
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France
| | - Axel Gansmüller
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France
| | - Dominik Schaniel
- Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France
| | - Gennadiy A Kostin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| |
Collapse
|
10
|
Stolyarova ED, Mikhailov AA, Ulantikov AA, Eremina JA, Klyushova LS, Kuratieva NV, Nadolinny VA, Kostin GA. Blue-to-red light triggered nitric oxide release in cytotoxic/cytostatic ruthenium nitrosyl complexes bearing biomimetic ligands. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Yakovlev IA, Mikhailov AA, Eremina JA, Klyushova LS, Nadolinny VA, Kostin GA. Nitric oxide release and related light-induced cytotoxicity of ruthenium nitrosyls with coordinated nicotinate derivatives. Dalton Trans 2021; 50:13516-13527. [PMID: 34495025 DOI: 10.1039/d1dt02190g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthetic approaches for the preparation of trans(NO,OH)-cis(NO2,NO2)-[RuNO(L)2(NO2)2OH], where L = ethyl nicotinate (I) and methyl nicotinate (II), are reported. The structures of the complexes are characterized by X-ray diffraction and analyzed by Hirshfeld surface analysis. Both compounds show a nitric oxide release reaction under 445 or 532 nm irradiation of dimethyl sulfoxide (DMSO) solutions, which is studied by combined ultraviolet-visible- (UV-vis), infrared- (IR), and electron paramagnetic resonance (EPR) spectroscopy and density functional theory (DFT) calculations. The charge transfer from the OH-Ru-NO chain and nitrite ligands to the antibonding orbitals of Ru-NO is responsible for the photo-cleavage of the ruthenium-nitrosyl bond. The elimination of NO leads to a side reaction, namely the protonation of the parent hydroxyl compound. The cytotoxicity and photo-induced cytotoxicity investigations of both compounds on the breast adenocarcinoma cell line MCF-7 reveal that (I) and (II) are cytotoxic with IC50 values of 27.5 ± 2.8 μM and 23.3 ± 0.3 μM, respectively. Moreover, (I) shows an increase of the toxicity after light irradiation by 7 times (IC50 = 4.1 ± 0.1), which makes it a prominent target for deeper biological investigations.
Collapse
Affiliation(s)
- Ivan A Yakovlev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Artem A Mikhailov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Julia A Eremina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics - Subdivision of FRC FTM, 2/12 Timakova str., Novosibirsk, 630060, Russia
| | - Vladimir A Nadolinny
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Gennadiy A Kostin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia.
| |
Collapse
|
12
|
Mikhailov AA, Stolyarova ED, Kostin GA. PHOTOCHEMISTRY OF RUTHENIUM NITROSYL COMPLEXES IN SOLIDS AND SOLUTIONS AND ITS POTENTIAL APPLICATIONS. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621040016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Fomenko IS, Mikhailov AA, Vorobyev V, Kuratieva NV, Kostin GA, Schaniel D, Nadolinny VA, Gushchin AL. Solution and solid-state light-induced transformations in heterometallic vanadium-ruthenium nitrosyl complex. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Mikhailov AA, Sukhikh TS, Kuratieva NV, Pishchur DP, Kostin GA. Remarkable thermal stability of light-induced Ru–ON linkage isomers in mixed salts of a ruthenium amine complex with a trans-ON–Ru–F coordinate. Dalton Trans 2021; 50:2864-2871. [DOI: 10.1039/d0dt04323k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The novel complexes with trans-ON–Ru–F coordinate exhibit the highest thermal stability of Ru–ON photoinduced isomers.
Collapse
Affiliation(s)
- Artem A. Mikhailov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | - Taisiya S. Sukhikh
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | - Natalia V. Kuratieva
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | - Denis P. Pishchur
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| | - Gennadiy A. Kostin
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk 630090
- Russian Federation
| |
Collapse
|
15
|
Rechitskaya E, Kuratieva N, Lider E, Eremina J, Klyushova L, Eltsov I, Kostin G. Tuning of cytotoxic activity by bio-mimetic ligands in ruthenium nitrosyl complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|