1
|
Fu L, Yao Y, Ma J, Zhang Z, Wang G, Wei W. Nanoflower-like NiCo 2O 4 Composite Graphene Oxide as a Bifunctional Catalyst for Zinc-Air Battery Cathode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6990-7000. [PMID: 38512056 DOI: 10.1021/acs.langmuir.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Developing efficient bifunctional catalysts for nonprecious metal-based oxygen reduction (ORR) and oxygen evolution (OER) is crucial to enhance the practical application of zinc-air batteries. The study harnessed electrostatic forces to anchor the nanoflower-like NiCo2O4 onto graphene oxide, mitigating the poor inherent conductivity in NiCo2O4 as a transition metal oxide and preventing excessive agglomeration of the nanoflower-like structures during catalysis. Consequently, the resulting composite, NiCo2O4-GO/C, exhibited notably superior ORR and OER catalytic performance compared to pure nanoflower-like NiCo2O4. Notably, it excelled in OER catalytic activity of the OER relative to the precious metal RuO2. As a bifunctional catalyst for ORR and OER, NiCo2O4-GO/C displayed a potential difference of 0.88 V between the ORR half-wave potential and the OER potential at 10 mA·cm-2, significantly lower than the 1.08 V observed for pure flower-like NiCo2O4 and comparable to the 0.88 V exhibited by precious metal catalysts Pt/C + RuO2. The NiCo2O4-GO/C-based zinc-air battery demonstrated a discharge capacity of 817.3 mA h·g-1, surpassing that of precious metal-based zinc-air batteries. Moreover, charge-discharge cycling tests indicated the superior stability of the NiCo2O4-GO/C-based zinc-air battery compared to its precious metal-based counterparts.
Collapse
Affiliation(s)
- Lixiang Fu
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Yifan Yao
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Jingling Ma
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, PR China
| | - Zhikang Zhang
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Guangxin Wang
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, PR China
| | - Weifeng Wei
- Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
2
|
Tang W, Mai J, Liu L, Yu N, Fu L, Chen Y, Liu Y, Wu Y, van Ree T. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. NANOSCALE ADVANCES 2023; 5:4368-4401. [PMID: 37638171 PMCID: PMC10448312 DOI: 10.1039/d3na00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
With the growing depletion of traditional fossil energy resources and ongoing enhanced awareness of environmental protection, research on electrochemical energy storage techniques like zinc-air batteries is receiving close attention. A significant amount of work on bifunctional catalysts is devoted to improving OER and ORR reaction performance to pave the way for the commercialization of new batteries. Although most traditional energy storage systems perform very well, their durability in practical applications is receiving less attention, with issues such as carbon corrosion, reconstruction during the OER process, and degradation, which can seriously impact long-term use. To be able to design bifunctional materials in a bottom-up approach, a summary of different kinds of carbon materials and transition metal-based materials will be of assistance in selecting a suitable and highly active catalyst from the extensive existing non-precious materials database. Also, the modulation of current carbon materials, aimed at increasing defects and vacancies in carbon and electron distribution in metal-N-C is introduced to attain improved ORR performance of porous materials with fast mass and air transfer. Finally, the reconstruction of catalysts is introduced. The review concludes with comprehensive recommendations for obtaining high-performance and highly-durable catalysts.
Collapse
Affiliation(s)
- Wanqi Tang
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Jiarong Mai
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Nengfei Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yankai Liu
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Institute of Advanced Materials (IAM), School of Energy Science and Engineering, Nanjing Tech University Nanjing 211816 P. R. China
- Hunan Bolt Power New Energy Co., Ltd Dianjiangjun Industrial Park, Louxing District Loudi 417000 Hunan China
- School of Energy and Environment, Southeast University Nanjing 210096 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
3
|
Sim WJ, Nguyen MT, Huang Z, Kheawhom S, Wattanakit C, Yonezawa T. Efficient iron-cobalt oxide bifunctional electrode catalysts in rechargeable high current density zinc-air batteries. NANOSCALE 2022; 14:8012-8022. [PMID: 35612908 DOI: 10.1039/d2nr01258h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Iron-cobalt (FeCo) oxides dispersed on reduced graphene oxide (rGO) were synthesized from nitrate precursors at loading levels from 10 wt% to 60 wt%. These catalysts were tested in lab-scale zinc-air batteries (ZABs) at a high current density of 100 mA cm-2 of the cathode area for the first time, cycling between 60 min of discharging and 60 min of charging. The optimum loading level for the best ZAB cycling performance was found to be 40 wt%, at which CoFe2O4 and CoO nanocrystals were detected. A discharge capacity of at least 90% was maintained for about 60 cycles with FeCo 40 wt%, demonstrating superior stability over amorphous FeCo oxides with FeCo 10 wt% despite similar performance at electrochemical tests. At a high current density of 100 mA cm-2, OER catalytic activity was found to be the limiting factor in ZAB's cyclability. The discrepancies between the ORR/OER catalytic activities by electrochemical and battery cycling test results highlight the role and importance of rGO in improving electrical conductivity and activation of metal oxide electrocatalysts under high current density conditions. The difference of battery cycling test results from traditional electrochemical test results suggests that electrochemical tests conducted at low current densities may be inadequate in predicting practical battery cycling performance.
Collapse
Affiliation(s)
- Wei Jian Sim
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Zixuan Huang
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Soorathep Kheawhom
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Payathai Road Pathumwan, Bangkok 10330, Thailand
| | - Chularat Wattanakit
- Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
4
|
Qian B, Zhang Y, Hou X, Bu D, Zhang K, Lan Y, Li Y, Li S, Ma T, Song XM. A Dual Photoelectrode Photoassisted Fe-Air Battery: The Photo-Electrocatalysis Mechanism Accounting for the Improved Oxygen Evolution Reaction and Oxygen Reduction Reaction of Air Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103933. [PMID: 34862712 DOI: 10.1002/smll.202103933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Effective utilization of solar energy in battery systems is a promising solution to achieve sustainable and green development. In this work, a photoassisted Fe-air battery (PFAB) with two photoelectrodes of ZnO-TiO2 heterostructure and polyterthiophene (pTTh)-coated CuO (pTTh-CuO) grown on fluorine-doped tin oxide (FTO) is proposed. The band structure of semiconductors and the charge-transfer mechanism of heterostructure are studied. The electrochemical results show that the photogenerated electrons and holes play key roles in reducing the oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) overpotential in the discharging and charging processes, respectively. The short-circuit current density, the open-circuit voltage, and the maximum power output of the PFAB can reach 34.28 mA cm-2 , 1.15 V, and 5.69 mW cm-2 upon illumination, respectively. The photoassisted Fe-air battery exhibits a low charge voltage of 0.64 V for ZnO-TiO2 as photoelectrode and a discharge voltage of 1.38 V for pTTh-CuO as a photoelectrode at 0.1 mA cm-2 .
Collapse
Affiliation(s)
- Bingzhi Qian
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yu Zhang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xing Hou
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Degang Bu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Kai Zhang
- College of Chemistry, Jilin University, Changchun, 130000, China
| | - Yalin Lan
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yuewen Li
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Shuo Li
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
5
|
Wang X, Wang J, Jiang W, Chen C, Yu B, Xu R. Facile synthesis MnCo2O4 modifying PbO2 composite electrode with enhanced OER electrocatalytic activity for zinc electrowinning. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Karkera G, Prakash AS. Decoupling the Cumulative Contributions of Capacity Fade in Ethereal-Based Li-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27870-27881. [PMID: 31298520 DOI: 10.1021/acsami.9b07046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the loop of numerous challenges and ambiguities, Li-O2 batteries are crawling to reach their commercialization phase. To achieve the progressive milestones, along with the developments in the architecture of cathodes, anodes, and electrolytes, understanding its failure mode is equally important. Under an unrestricted charge-discharge protocol, cyclability of nonaqueous Li-O2 batteries are limited to only a few cycles. This report examines an additive-free ether-based Li-O2 battery in the perspective of identifying the origin of possible side reactions and their affiliations to integral components of the battery. Structural and compositional changes during every charge-discharge sequence are studied using bottom-up sequential tear-down analysis. The substantial increase in impedance and corresponding decrease in capacities after every cycle are interrelated to the amount of electrode passivation resulting from the discharge products and electrolyte decomposition. From the tear-down analysis, it is approximated that, among the total capacity loss, ≈55% is attributed to the cathode, ≈28% of the loss corresponds to the anode, and ≈17% is attributed to the electrolyte, given that battery failure instigates from the "reactive oxygen species". Electrochemically formed Li2O2 via the superoxide pathway induces large decomposition overpotentials up to 4.6 V versus Li/Li+ because of its overrated reactivity with electrolytes and carbon supports. On the contrary, efficient decomposition of chemically formed Li2O2 below 3.9 V proves that the extra charge potential observed for electrochemically formed Li2O2 is in fact consumed for the decomposition of irreversibly formed side products via the superoxide pathway. Spontaneous reactivity of Li2O2 and trivial reactivity of Li2O highlight the need of advanced strategies to maneuver oxygen red-ox in selective pathways that unalter the electrolyte and electrodes, and the necessity of their synchronized performance for the evolution of practical Li-O2 batteries.
Collapse
Affiliation(s)
- Guruprakash Karkera
- CSIR-Central Electrochemical Research Institute-Chennai Unit , CSIR Madras Complex , Taramani, Chennai 600113 , India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Central Electrochemical Research Institute-Chennai Unit , CSIR Madras Complex , Chennai 600113 , India
| | - Annigere S Prakash
- CSIR-Central Electrochemical Research Institute-Chennai Unit , CSIR Madras Complex , Taramani, Chennai 600113 , India
- Academy of Scientific and Innovative Research (AcSIR) , CSIR-Central Electrochemical Research Institute-Chennai Unit , CSIR Madras Complex , Chennai 600113 , India
| |
Collapse
|