1
|
Shahzad A, Aslibeiki B, Slimani S, Ghosh S, Vocciante M, Grotti M, Comite A, Peddis D, Sarkar T. Magnetic nanocomposite for lead (II) removal from water. Sci Rep 2024; 14:17674. [PMID: 39085297 PMCID: PMC11291739 DOI: 10.1038/s41598-024-68491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
A magnetic perovskite-spinel oxide nanocomposite synthesized through a sol-gel self-combustion process is used for the first time as an adsorbent to remove toxic heavy metals (i.e., Pb2+). The synthesized LaFeO3:CoFe2O4 ((LFO)1:(CFO)x) (x = 0.11-0.87) nanocomposites possess good stability, abundant oxygenated active binding sites, and unique structural features, making them suitable for removing divalent Pb2+ ions. Scanning electron microscopy, X-ray diffraction, BET surface area, magnetization measurements, zeta-potential analyses, and X-ray photoelectron spectroscopy were used to analyze the nanocomposites, and their structural changes after Pb2+ ions adsorption. Batch tests confirmed that (LFO)1:(CFO)x efficiently removes Pb2+ from water with a maximum adsorption capacity of 105.96 mg/g. The detailed quantitative study indicates that the interaction of hydroxyl groups with Pb2+ ions occurs through electrostatic interactions and complex formation. We also demonstrate a new ring-magnetic separator system that allows magnetic separation of the toxic ions at a higher speed compared to traditional block magnets. The unique structure, high porosity, large specific surface area, and oxygenated functional groups of (LFO)1:(CFO)x nanocomposites make them promising materials for removal of heavy metal ions and possibly other environmental pollutants. This study provides a new approach to preparing nanocomposites of magnetic spinel ferrites with perovskite oxides for environmental applications.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Materials Science and Engineering, Uppsala University, Box 35, 75103, Uppsala, Sweden
| | - Bagher Aslibeiki
- Department of Materials Science and Engineering, Uppsala University, Box 35, 75103, Uppsala, Sweden
- Faculty of Physics, University of Tabriz, Tabriz, Iran
| | - Sawssen Slimani
- Department of Chemistry and Industrial Chemistry & Genova INSTM RU, University of Genova, 16146, Genova, Italy
- Institute of Structure of Matter, National Research Council, nM2-Lab, Via Salaria Km 29.300, Monterotondo Scalo, 00015, Roma, Italy
| | - Sagnik Ghosh
- Department of Materials Science and Engineering, Uppsala University, Box 35, 75103, Uppsala, Sweden
| | - Marco Vocciante
- Department of Chemistry and Industrial Chemistry & Genova INSTM RU, University of Genova, 16146, Genova, Italy
| | - Marco Grotti
- Department of Chemistry and Industrial Chemistry & Genova INSTM RU, University of Genova, 16146, Genova, Italy
| | - Antonio Comite
- Department of Chemistry and Industrial Chemistry & Genova INSTM RU, University of Genova, 16146, Genova, Italy
| | - Davide Peddis
- Department of Chemistry and Industrial Chemistry & Genova INSTM RU, University of Genova, 16146, Genova, Italy.
- Institute of Structure of Matter, National Research Council, nM2-Lab, Via Salaria Km 29.300, Monterotondo Scalo, 00015, Roma, Italy.
| | - Tapati Sarkar
- Department of Materials Science and Engineering, Uppsala University, Box 35, 75103, Uppsala, Sweden.
| |
Collapse
|
2
|
Maltoni P, Barucca G, Rutkowski B, Spadaro MC, Jönsson PE, Varvaro G, Yaacoub N, De Toro JA, Peddis D, Mathieu R. Unraveling Exchange Coupling in Ferrites Nano-Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304152. [PMID: 37888807 DOI: 10.1002/smll.202304152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The magnetic coupling of a set of SrFe12 O19 /CoFe2 O4 nanocomposites is investigated. Advanced electron microscopy evidences the structural coherence and texture at the interfaces of the nanostructures. The fraction of the lower anisotropy phase (CoFe2 O4 ) is tuned to assess the limits that define magnetically exchange-coupled interfaces by performing magnetic remanence, first-order reversal curves (FORCs), and relaxation measurements. By combining these magnetometry techniques and the structural and morphological information from X-ray diffraction, electron microscopy, and Mössbauer spectrometry, the exchange intergranular interaction is evidenced, and the critical thickness within which coupled interfaces have a uniform reversal unraveled.
Collapse
Affiliation(s)
- Pierfrancesco Maltoni
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 751 03, Sweden
| | - Gianni Barucca
- Dipartimento di Scienze e Ingegneria della Materia dell'Ambiente ed Urbanistica-SIMAU, Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Bogdan Rutkowski
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, Kraków, 30-059, Poland
| | - Maria Chiara Spadaro
- Dipartimento di Scienze e Ingegneria della Materia dell'Ambiente ed Urbanistica-SIMAU, Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Petra E Jönsson
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Gaspare Varvaro
- Istituto di Struttura della Materia, nM2-lab, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Rome, 00015, Italy
| | - Nader Yaacoub
- Institut des Molécules et Matériaux du Mans, CNRS UMR-6283, Le Mans Université, Le Mans, F-72085, France
| | - José A De Toro
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Departamento de Física Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Davide Peddis
- Istituto di Struttura della Materia, nM2-lab, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Rome, 00015, Italy
- Dipartimento di Chimica e Chimica Industriale & INSTM, nM2-Lab, Università degli Studi di Genova, Via Dodecaneso 31, Genova, 1-16146, Italy
| | - Roland Mathieu
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 751 03, Sweden
| |
Collapse
|
3
|
Maltoni P, Baričić M, Barucca G, Spadaro MC, Arbiol J, Yaacoub N, Peddis D, Mathieu R. Tunable particle-agglomeration and magnetic coupling in bi-magnetic nanocomposites. Phys Chem Chem Phys 2023; 25:27817-27828. [PMID: 37814895 DOI: 10.1039/d3cp03689h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A set of non-stoichiometric Zn-Co-ferrite nanoparticles (NPs) was prepared by thermal decomposition of metallic complexes, in the presence of oleic acid, and, after a ligand-exchange process, was coated by a hydrophilic surfactant: these NPs were used as seeds in a sol-gel self-combustion synthesis to prepare nanocomposites (NCs) with a fixed weight ratio. Our focus here is the development of an efficient synthetic approach to control the magnetic coupling between a hard-magnetic matrix (Sr-ferrite) and NPs. The physico-chemical synthetic conditions (temperature, pH, colloidal stability) were optimized in order to tune their effect on the final particles' agglomeration in the matrix. We demonstrate that our synthetic approach is a novel way to produce strongly magnetically coupled NCs, where the final extrinsic properties could be tuned by controlling (i) the agglomeration of seeds in the matrix and (ii) their elemental doping.
Collapse
Affiliation(s)
- Pierfrancesco Maltoni
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 751 03, Sweden.
| | - Miran Baričić
- Dipartimento di Chimica e Chimica Industriale & INSTM, nM2-Lab, Università degli Studi di, Genova, Via Dodecaneso 31, Genova, 1-16146, Italy.
| | - Gianni Barucca
- Dipartimento di Scienze e Ingegneria della Materia dell'Ambiente ed Urbanistica - SIMAU, Università Politecnica delle Marche, Ancona 60131, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Strttura della Materia, nM2-lab, Monterotondo Scalo (RM), 00015, Italy
| | - Maria Chiara Spadaro
- Dipartimento di Scienze e Ingegneria della Materia dell'Ambiente ed Urbanistica - SIMAU, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08020, Barcelona, Catalonia, Spain
| | - Nader Yaacoub
- Le Mans Université, Institut des Molécules et Matériaux du Mans, CNRS UMR-6283, Avenue Olivier Messiaen, Le Mans, 72085, France
| | - Davide Peddis
- Dipartimento di Chimica e Chimica Industriale & INSTM, nM2-Lab, Università degli Studi di, Genova, Via Dodecaneso 31, Genova, 1-16146, Italy.
- Consiglio Nazionale delle Ricerche, Istituto di Strttura della Materia, nM2-lab, Monterotondo Scalo (RM), 00015, Italy
| | - Roland Mathieu
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 751 03, Sweden.
| |
Collapse
|
4
|
Sharma P, Jain A, Chatterjee R. Enhanced magnetic performance in exchange-coupled CoFe 2O 4-LaFeO 3nanocomposites. NANOTECHNOLOGY 2021; 33:105708. [PMID: 34844232 DOI: 10.1088/1361-6528/ac3e31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Nanocomposite oxide system of (x)CoFe2O4-(100-x)LaFeO3with different weight percent of core-shell structured CoFe2O4(x = 0, 20, 40, 50, 80, 100) and LaFeO3were fabricated, via a two-step sol-gel wet-chemical synthesis technique. The phase formation of the composites was confirmed by x-ray diffraction and the structural parameters of both the phases were attained from the Rietveld refinement results of XRD patterns. The elemental composition and microstructure of the resulting nanocomposites were examined by using energy-dispersive x-ray spectroscopy and high-resolution transmission electron microscopy technique, respectively. The detailed magnetometry studies at 300 K and 5 K reveal that the inter-and intra-phase magnetic interactions affect the saturation magnetization (MS), remanence magnetization (MR) and coercivity (HC) values of this bi-magnetic system. The remarkable feature of 'pinched magnetic hysteresis loop' was evidenced in the [(50) CoFe2O4- (50)LaFeO3] composite, leading to a lesser magnetic loss factor and better magnetic performance of this sample. The report depicts an improved interfacial exchange coupling at 5 K, for the nanocomposites of core-shell morphology and offers an understanding or explanation of improved magnetic performance for the (50)CoFe2O4- (50)LaFeO3nanocomposite and opens up an important way to design new multiferroic applications in low magnetic fields.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anjali Jain
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ratnamala Chatterjee
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Datt G, Kotnana G, Maddu R, Vallin Ö, Joshi DC, Peddis D, Barucca G, Kamalakar MV, Sarkar T. Combined Bottom-Up and Top-Down Approach for Highly Ordered One-Dimensional Composite Nanostructures for Spin Insulatronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37500-37509. [PMID: 34325507 PMCID: PMC8397244 DOI: 10.1021/acsami.1c09582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Engineering magnetic proximity effects-based devices requires developing efficient magnetic insulators. In particular, insulators, where magnetic phases show dramatic changes in texture on the nanometric level, could allow us to tune the proximity-induced exchange splitting at such distances. In this paper, we report the fabrication and characterization of highly ordered two-dimensional arrays of LaFeO3 (LFO)-CoFe2O4 (CFO) biphasic magnetic nanowires, grown on silicon substrates using a unique combination of bottom-up and top-down synthesis approaches. The regularity of the patterns was confirmed using atomic force microscopy and scanning electron microscopy techniques, whereas magnetic force microscopy images established the magnetic homogeneity of the patterned nanowires and absence of any magnetic debris between the wires. Transmission electron microscopy shows a close spatial correlation between the LFO and CFO phases, indicating strong grain-to-grain interfacial coupling, intrinsically different from the usual core-shell structures. Magnetic hysteresis loops reveal the ferrimagnetic nature of the composites up to room temperature and the presence of a strong magnetic coupling between the two phases, and electrical transport measurements demonstrate the strong insulating behavior of the LFO-CFO composite, which is found to be governed by Mott-variable range hopping conduction mechanisms. A shift in the Raman modes in the composite sample compared to those of pure CFO suggests the existence of strain-mediated elastic coupling between the two phases in the composite sample. Our work offers ordered composite nanowires with strong interfacial coupling between the two phases that can be directly integrated for developing multiphase spin insulatronic devices and emergent magnetic interfaces.
Collapse
Affiliation(s)
- Gopal Datt
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Ganesh Kotnana
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Ramu Maddu
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Örjan Vallin
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Deep Chandra Joshi
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Davide Peddis
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Via Dodecaneso
31, Genova I-16146, Italy
- Institute
of Structure of Matter, Italian National
Research Council (CNR), Monterotondo
Scalo, 00015 Rome, Italy
| | - Gianni Barucca
- Department
SIMAU, Università Politecnica delle
Marche, Via Brecce Bianche
12, Ancona 60131, Italy
| | - M. Venkata Kamalakar
- Department
of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Tapati Sarkar
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| |
Collapse
|
6
|
Laureti S, Gerardino A, D'Acapito F, Peddis D, Varvaro G. The role of chemical and microstructural inhomogeneities on interface magnetism. NANOTECHNOLOGY 2021; 32:205701. [PMID: 33530067 DOI: 10.1088/1361-6528/abe260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study of interfacing effects arising when different magnetic phases are in close contact has led to the discovery of novel physical properties and the development of innovative technological applications of nanostructured magnetic materials. Chemical and microstructural inhomogeneities at the interfacial region, driven by interdiffusion processes, chemical reactions and interface roughness may significantly affect the final properties of a material and, if suitably controlled, may represent an additional tool to finely tune the overall physical properties. The activity at the Nanostructured Magnetic Materials Laboratory (nM2-Lab) at CNR-ISM of Italy is aimed at designing and investigating nanoscale-engineered magnetic materials, where the overall magnetic properties are dominated by the interface exchange coupling. In this review, some examples of recent studies where the chemical and microstructural properties are critical in determining the overall magnetic properties in core/shell nanoparticles, nanocomposites and multilayer heterostructures are presented.
Collapse
Affiliation(s)
- S Laureti
- Istituto di Struttura della Materia, CNR, nM2-Lab, Monterotondo Scalo (Roma), I-00015, Italy
| | - A Gerardino
- Istituto di Fotonica e Nanotecnologie, CNR, via Cineto Romano 42, I-00156, Italy
| | - F D'Acapito
- CNR-IOM-OGG c/o ESRF, LISA CRG, c/o ESRF BP220, F-38043 Grenoble, France
| | - D Peddis
- Istituto di Struttura della Materia, CNR, nM2-Lab, Monterotondo Scalo (Roma), I-00015, Italy
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, nM2-Lab, Via Dodecaneso 31, Genova, I-16146, Italy
| | - G Varvaro
- Istituto di Struttura della Materia, CNR, nM2-Lab, Monterotondo Scalo (Roma), I-00015, Italy
| |
Collapse
|
7
|
|
8
|
Abstract
Nanocomposites based on boron carbide B4C are hard materials with wide field of applications in modern technologies. A system of first-order ordinary differential equations that simulates the process of chemical synthesis of nanopowders of B4C–TiB2 compositions containing titanium diboride (TiB2) as an additional phase is suggested and resolved numerically for a typical ratio of reaction constants. Reagents and products concentrations are found as time-functions. In this way, the optimal route of production technology of boron carbide-based nanomaterials can be identified.
Collapse
|
9
|
Bica I, Anitas EM, Chirigiu L. Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and Transducers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2060. [PMID: 33086509 PMCID: PMC7603160 DOI: 10.3390/nano10102060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022]
Abstract
We present a simple, low-cost, and environmental-friendly method for the fabrication of hybrid magnetorheological composites (hMCs) based on cotton fibers soaked with a mixture of silicone oil (SO), carbonyl iron (CI) microparticles, and iron oxide microfibers (μF). The obtained hMCs, with various ratios (Φ) of SO and μF, are used as dielectric materials for manufacturing electrical devices. The equivalent electrical capacitance and resistance are investigated in the presence of an external magnetic field, with flux density B. Based on the recorded data, we obtain the variation of the relative dielectric constant (ϵr'), and electrical conductivity (σ), with Φ, and B. We show that, by increasing Φ, the distance between CI magnetic dipoles increases, and this leads to significant changes in the behaviour of ϵr' and σ in a magnetic field. The results are explained by developing a theoretical model that is based on the dipolar approximation. They indicate that the obtained hMCs can be used in the fabrication of magneto-active fibers for fabrication of electric/magnetic field sensors and transducers.
Collapse
Affiliation(s)
- Ioan Bica
- West University of Timisoara, V. Parvan Avenue 4, 300223 Timisoara, Romania;
| | - Eugen Mircea Anitas
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
- Horia Hulubei, National Institute of Physics and Nuclear Engineering, 077125 Bucharest-Magurele, Romania
| | - Liviu Chirigiu
- University of Medicine and Pharmacy, 200396 Craiova, Romania;
| |
Collapse
|