1
|
Khan AA, Alsalhi SA, Rahman AU. Exploring Si-centered phthalocyanine as a single atom catalyst for N 2O reduction: a DFT study. Phys Chem Chem Phys 2024; 26:17110-17117. [PMID: 38845527 DOI: 10.1039/d4cp00832d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
To remove the greenhouse gas N2O from the environment, recently, researchers have taken great interest in single-atom catalysts (SACs). In this study, we investigated various reaction pathways and barrier energies for the N2O reduction process onto Si-coordinated phthalocyanine (Si@PthC) employing density functional theory. The outcomes validate that Si decoration in PthC is energetically stable while the corresponding electronic properties show that the Si atom acts as the reactive site for catalytic activity. The N2O molecule exhibits spontaneous dissociation over the catalyst surface from the O-end with -4.01 eV dissociation energy. Meanwhile, N2O dissociation via the N-end involves chemisorption onto the Si@PthC surface with an adsorption energy (Ead) of -1.16 eV, and the dissociation needs an energy barrier of 0.51 eV. The bond distances and negative adsorption energies (-1.11 and -2.40 eV) evince that CO and O2 species chemisorbed onto the Si@PthC surface. However, these energies are smaller than the N2O dissociation energy, which demonstrates that the presence of CO and O2 molecules cannot interrupt the N2O reduction process. Additionally, the CO + O* → CO2 reaction was executed for catalyst recovery, and the reaction proceeds very quickly on the Si@PthC catalyst, with a very small energy barrier (0.37 eV), indicating the excellent catalytic reactivity of the studied catalyst. These results propose that the designed catalyst can be valuable in the progress of novel noble metal-free catalysts for the elimination of harmful N2O from the environment.
Collapse
Affiliation(s)
- Adnan Ali Khan
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan.
| | - Sarah Abdullah Alsalhi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ata Ur Rahman
- THz Technical Research Center of Shenzhen University, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
Wang G, Ren R, Feng X, Wang Y, Meng J, Jia J. First-principle calculations study of the ORR/OER electrocatalytic activity of ruthenium polyphthalocyanine axially modified with aliphatic thiol groups. Phys Chem Chem Phys 2024; 26:16207-16217. [PMID: 38804323 DOI: 10.1039/d4cp00424h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In this study, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activity of ruthenium polyphthalocyanine axially modified with different aliphatic thiol groups, RuPPc-SR (SR = -SCH3, -SC2H5, -SC3H7, -SC4H9, -SC5H11, and -SC6H13), in an acidic medium were simulated using DFT. All -SR groups can effectively enhance the ORR and OER catalytic activities of RuPPc. The ORR and OER overpotentials of RuPPc-SC4H9 are 0.237 V and 0.436 V, respectively, which are far lower than those of RuPPc (0.960 V and 0.903 V). For RuPPc-SC4H9, the four C and S atoms of the -SC4H9 chain and Ru atom are coplanar, and thus, conjugate effects and inductive effects exist between the -SC4H9 chain and Ru atom. This makes the Ru atom exhibit the least positive Bader charge and smallest spin density, and the anti-bonding orbitals of dxz, dyz, and dz2 of the Ru atom shift below the Fermi level (Ef). This makes the adsorption strength of RuPPc-SC4H9 toward ORR and OER intermediates the weakest, which accelerates the reaction process, thus resulting in better ORR and OER catalytic activity. Therefore, the introduction of the aliphatic thiol groups might effectively improve the OER/ORR catalytic activity of RuPPc.
Collapse
Affiliation(s)
- Guilin Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
- Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China
| | - Rongrong Ren
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Xiaoqin Feng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Yuxin Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Jie Meng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| |
Collapse
|
3
|
Wang G, Feng X, Ren R, Wang Y, Meng J, Jia J. Theoretical Study on ORR/OER Bifunctional Catalytic Activity of Axial Functionalized Iron Polyphthalocyanine. Molecules 2023; 29:210. [PMID: 38202793 PMCID: PMC10780174 DOI: 10.3390/molecules29010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Designing efficient ORR/OER bifunctional electrocatalysts is very significant for reducing energy consumption and environmental protection. Hence, we studied the ORR/OER bifunctional catalytic activity of iron polyphthalocyanine (FePPc) coordinated by a series of axial ligands which has different electronegative coordination atom (FePPc-L) (L = -CN, -SH, -SCH3, -SC2H5, -I, -Br, -NH2, -Cl, -OCH3, -OH, and -F) in alkaline medium by DFT calculations. Among all FePPc-L, FePPc-CN, FePPc-SH, FePPc-SCH3, and FePPc-SC2H5 exhibit excellent ORR/OER bifunctional catalytic activities. Their ORR/OER overpotential is 0.256 V/0.234 V, 0.278 V/0.256 V, 0.280 V/0.329 V, and 0.290 V/0.316 V, respectively, which are much lower than that of the FePPc (0.483 V/0.834 V). The analysis of the electronic structure of the above catalysts shows that the electronegativity of the coordination atoms in the axial ligand is small, resulting in less distribution of dz2, dyz, and dxz orbitals near Ef, weak orbital polarization, small charge and magnetic moment of the central Fe atom, and weak adsorption strength for *OH. All these prove that the introduction of axial ligands with appropriate electronegativity coordinating atoms can adjust the adsorption of catalyst to intermediates and modify the ORR/OER bifunctional catalytic activities. This is an effective strategy for designing efficient ORR/OER bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Guilin Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China; (G.W.); (X.F.); (R.R.); (Y.W.); (J.M.)
- Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China
| | - Xiaoqin Feng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China; (G.W.); (X.F.); (R.R.); (Y.W.); (J.M.)
| | - Rongrong Ren
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China; (G.W.); (X.F.); (R.R.); (Y.W.); (J.M.)
| | - Yuxin Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China; (G.W.); (X.F.); (R.R.); (Y.W.); (J.M.)
| | - Jie Meng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China; (G.W.); (X.F.); (R.R.); (Y.W.); (J.M.)
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China; (G.W.); (X.F.); (R.R.); (Y.W.); (J.M.)
| |
Collapse
|
4
|
Xue R, Jiang W, He X, Xiong H, Xie G, Nie Z. The Adsorption Mechanisms of SF 6-Decomposed Species on Tc- and Ru-Embedded Phthalocyanine Surfaces: A Density Functional Theory Study. Molecules 2023; 28:7137. [PMID: 37894617 PMCID: PMC10608908 DOI: 10.3390/molecules28207137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Designing high-performance materials for the detection or removal of toxic decomposition gases of sulfur hexafluoride is crucial for both environmental monitoring and human health preservation. Based on first-principles calculations, the adsorption performance and gas-sensing properties of unsubstituted phthalocyanine (H2Pc) and H2Pc doped with 4d transition metal atoms (TM = Tc and Ru) towards five characteristic decomposition components (HF, H2S, SO2, SOF2, and SO2F2) were simulated. The findings indicate that both the TcPc and RuPc monolayers are thermodynamically and dynamically stable. The analysis of the adsorption energy indicates that H2S, SO2, SOF2, and SO2F2 underwent chemisorption on the TcPc monolayer. Conversely, the HF molecules were physisorbed through interactions with H atoms. The chemical adsorption of H2S, SO2, and SOF2 occurred on the RuPc monolayer, while the physical adsorption of HF and SO2F2 molecules was observed. Moreover, the microcosmic mechanism of the gas-adsorbent interaction was elucidated by analyzing the charge density differences, electron density distributions, Hirshfeld charges, and density of states. The TcPc and RuPc monolayers exhibited excellent sensitivity towards H2S, SO2, and SOF2, as evidenced by the substantial alterations in the band gaps and work functions of the TcPc and RuPc nanosheets. Our calculations hold significant value for exploring the potential chemical sensing applications of TcPc and RuPc monolayers in gas sensing, with a specific focus on detecting sulfur hexafluoride.
Collapse
Affiliation(s)
- Rou Xue
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| | - Wen Jiang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| | - Xing He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| | - Huihui Xiong
- School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Gang Xie
- Kunming Metallurgical Research Institute Co., Ltd., Kunming 650031, China;
| | - Zhifeng Nie
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| |
Collapse
|
5
|
Zhang D, Zhang Q, Peng C, Long Z, Zhuang G, Kramer D, Komarneni S, Zhi C, Xue D. Recent advances in developing multiscale descriptor approach for the design of oxygen redox electrocatalysts. iScience 2023; 26:106624. [PMID: 37138778 PMCID: PMC10149376 DOI: 10.1016/j.isci.2023.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Oxygen redox electrocatalysis is the crucial electrode reaction among new-era energy sources. The prerequisite to rationally design an ideal electrocatalyst is accurately identifying the structure-activity relationship based on the so-called descriptors which link the catalytic performance with structural properties. However, the quick discovery of those descriptors remains challenging. In recent, the high-throughput computing and machine learning methods were identified to present great prospects for accelerating the screening of descriptors. That new research paradigm improves cognition in the way of oxygen evolution reaction/oxygen reduction reaction activity descriptor and reinforces the understanding of intrinsic physical and chemical features in the electrocatalytic process from a multiscale perspective. This review summarizes those new research paradigms for screening multiscale descriptors, especially from atomic scale to cluster mesoscale and bulk macroscale. The development of descriptors from traditional intermediate to eigen feature parameters has been addressed which provides guidance for the intelligent design of new energy materials.
Collapse
Affiliation(s)
- Dantong Zhang
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Peng
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author
| | - Zhi Long
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, Zhejiang Province 310032, China
| | - Denis Kramer
- Helmut-Schmidt-University, University of the Armed Forces, Hamburg 22043, Germany
| | - Sridhar Komarneni
- Materials Research Institute, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Corresponding author
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
6
|
Wang Q, Yang C, Yan Y, Yu H, Guan A, Kan M, Zhang Q, Zhang L, Zheng G. Electrocatalytic CO 2 Upgrading to Triethanolamine by Bromine-Assisted C 2 H 4 Oxidation. Angew Chem Int Ed Engl 2023; 62:e202212733. [PMID: 36286347 DOI: 10.1002/anie.202212733] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/05/2022]
Abstract
The electrocatalytic carbon dioxide (CO2 ) reduction is a promising approach for converting this greenhouse gas into value-added chemicals, while the capability of producing products with longer carbon chains (Cn >3) is limited. Herein, we demonstrate the Br-assisted electrocatalytic oxidation of ethylene (C2 H4 ), a major CO2 electroreduction product, into 2-bromoethanol by electro-generated bromine on metal phthalocyanine catalysts. Due to the preferential formation of Br2 over *O or Cl2 to activate the C=C bond, a high partial current density of producing 2-bromoethanol (46.6 mA⋅cm-2 ) was obtained with 87.2 % Faradaic efficiency. Further coupling with the electrocatalytic nitrite reduction to ammonia at the cathode allowed the production of triethanolamine with six carbon atoms. Moreover, by coupling a CO2 electrolysis cell for in situ C2 H4 generation and a C2 H4 oxidation/nitrite reduction cell, the capability of upgrading of CO2 and nitrite into triethanolamine was demonstrated.
Collapse
Affiliation(s)
- Qihao Wang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Yaqin Yan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Haisheng Yu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Anxiang Guan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Miao Kan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Quan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, China
| |
Collapse
|
7
|
Qin X, Zhu S, Wang Y, Pan D, Shao M. Full atomistic mechanism study of hydrogen evolution reaction on Pt surfaces at universal pHs: Ab initio simulations at electrochemical interfaces. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Wang C, Wang Y, Guo Q, Dai E, Nie Z. Metal-Decorated Phthalocyanine Monolayer as a Potential Gas Sensing Material for Phosgene: A First-Principles Study. ACS OMEGA 2022; 7:21994-22002. [PMID: 35785291 PMCID: PMC9244902 DOI: 10.1021/acsomega.2c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Research into a gas sensing material with excellent performance to detect or remove toxic phosgene (COCl2) is of great significance to environmental and biological protection. In the present work, the adsorption performance of COCl2 on pristine phthalocyanine (Pc) and metal-decorated Pc (MePc, Me = Cu, Ga, and Ru) monolayers was studied by first-principles calculations. The results show that the absorption process of COCl2 on pristine Pc and CuPc both belong to physisorption, indicating that they are not suitable gas sensing materials for COCl2. When Pc sheets are decorated by Ga and Ru atoms, the adsorption of COCl2 is changed into chemisorption, and the corresponding adsorption energies are -0.57 and -0.50 eV for GaPc and RuPc, respectively. The microcosmic mechanism between COCl2 and adsorbents (GaPc, RuPc) was clarified by the analysis of the density of states, the charge density difference, and the Hirshfeld charge. In addition, the COCl2 adsorption results in a significant conductivity variation of the RuPc monolayer, demonstrating it exhibits a high sensitivity to the COCl2 molecule. Meanwhile, quick desorption processes were noticed at various temperatures for the COCl2/RuPc system. Consequently, the RuPc monolayer can be considered as a potential candidate for phosgene sensors because of the moderate adsorption strength, high sensitivity, and fast desorption speed.
Collapse
Affiliation(s)
- Chen Wang
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
- School
of Physical Science and Technology, Kunming
University, Kunming 650214, China
| | - Yajun Wang
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
- School
of Physical Science and Technology, Kunming
University, Kunming 650214, China
| | - Qijun Guo
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
- School
of Chemistry and Chemical Engineering, Kunming
University, Kunming 650214, China
| | - Enrui Dai
- School
of Chemistry and Chemical Engineering, Kunming
University, Kunming 650214, China
| | - Zhifeng Nie
- Yunnan
Key Laboratory of Metal−Organic Molecular Materials and Device, Kunming University, Kunming 650214, China
| |
Collapse
|
9
|
Qin Z, Wang Z, Zhao J. Computational screening of single-atom catalysts supported by VS 2 monolayers for electrocatalytic oxygen reduction/evolution reactions. NANOSCALE 2022; 14:6902-6911. [PMID: 35446333 DOI: 10.1039/d2nr01671k] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of highly efficient bifunctional electrocatalysts to boost oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is highly desirable for energy conversion and storage devices. Herein, by means of comprehensive first-principles computations, we systematically explored the catalytic activities of a series of single transition metal atoms anchored on two-dimensional VS2 monolayers (TM@VS2) for ORR/OER. Our results revealed that Ni@VS2 exhibits low overpotentials for both ORR (0.45 V) and OER (0.31 V), suggesting its great potential as a bifunctional catalyst, which is mainly induced by its moderate interaction with oxygenated intermediates according to the established scaling relationship and volcano plot. Interestingly, the substituted doping of nitrogen heteroatoms into the VS2 substrate can further effectively improve the ORR/OER activity of the active metal atom to achieve more eligible ORR/OER bifunctional catalysts. Our results not only propose a new class of potential bifunctional oxygen catalysts but also offer a feasible strategy for further tuning their catalytic activity.
Collapse
Affiliation(s)
- Zengming Qin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| | - Zhongxu Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| | - Jingxiang Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| |
Collapse
|
10
|
Xia J, Cao R, Wu Q. Transition metal decorated phthalocyanine as a potential host material for lithium polysulfides: a first-principles study. RSC Adv 2022; 12:13975-13984. [PMID: 35558832 PMCID: PMC9093166 DOI: 10.1039/d2ra02049a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
The shuttle effect caused by the soluble long-chain lithium polysulfides greatly hinders the practical application of lithium-sulfur (Li-S) batteries. Therefore, the introduction of suitable anchoring materials is more effective to mitigate this problem. Transition metal phthalocyanines (TMPc) are regarded as a new class of sulfur host materials. Here, 4d transition metal (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd) decorated phthalocyanines are designed and systematically researched for the performance analysis of anchoring S8/LiPSs by first-principles calculations. The results reveal that the bonding strength of LiPSs can be well adjusted by introducing suitable 4d transition metals into the phthalocyanine structure. The electronic structure analysis indicates the formation of TM-S bonds between the TMPc substrate materials and the LiPSs, which is essential to weaken the Li-S bonds and hence slow down the shuttle effect of LiPSs. ZrPc and NbPc both exhibit excellent potential and thermal stability for facilitating the conversion of LiPSs, as well as a better promoting effect for the sulfur reduction reactions (SRR) with a reduced Gibbs free energy in the rate-determining step (*Li2S2 → *Li2S) during the discharge reaction process. These findings in our work may encourage further experimental and theoretical research for anchoring LiPSs with TMPc as a host material.
Collapse
Affiliation(s)
- Jiezhen Xia
- Department of Physics, School of Science, Tibet University Lhasa 850000 China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University Lhasa 850000 China
| | - Rong Cao
- Department of Physics, School of Science, Tibet University Lhasa 850000 China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University Lhasa 850000 China
| | - Qi Wu
- Department of Physics, School of Science, Tibet University Lhasa 850000 China
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University Lhasa 850000 China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education Lhasa 850000 China
| |
Collapse
|
11
|
Chen S, Xu Z, Li J, Yang J, Shen X, Zhang Z, Li H, Li W, Li Z. Nanostructured transition-metal phthalocyanine complexes for catalytic oxygen reduction reaction. NANOTECHNOLOGY 2022; 33:182001. [PMID: 35045406 DOI: 10.1088/1361-6528/ac4cef] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Oxygen reduction reaction (ORR) plays a key role in the field of fuel cells. Efficient electrocatalysts for the ORR are important for fuel cells commercialization. Pt and its alloys are main active materials for ORR. However, their high cost and susceptibility to time-dependent drift hinders their applicability. Satisfactory catalytic activity of nanostructured transition metal phthalocyanine complexes (MPc) in ORR through the occurrence of molecular catalysis on the surface of MPc indicates their potential as a replacement material for precious-metal catalysts. Problems of MPc are analyzed on the basis of chemical structure and microstructure characteristics used in oxygen reduction catalysis, and the strategy for controlling the structure of MPc is proposed to improve the catalytic performance of ORR in this review.
Collapse
Affiliation(s)
- Siyu Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Zhanwei Xu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Jiayin Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Jun Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Xuetao Shen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Ziwei Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hongkui Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Wenyang Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Zhi Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
- Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| |
Collapse
|
12
|
Friedman A, Mizrahi M, Levy N, Zion N, Zachman M, Elbaz L. Application of Molecular Catalysts for the Oxygen Reduction Reaction in Alkaline Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58532-58538. [PMID: 34870405 DOI: 10.1021/acsami.1c16311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of precious group metal-free (PGM-free) catalysts for the oxygen reduction reaction is considered as the main thrust for the cost reduction of fuel cell technologies and their mass production. Within the PGM-free category, molecular catalysts offer an advantage over other heat-treated PGM-free catalysts owing to their well-defined structure, which enables further design of more active, selective, and durable catalysts. Even though non-heat-treated molecular catalysts with exceptional performance have been reported in the past, they were rarely tested in a fuel cell. Herein, we report on a molecular catalyst under alkaline conditions: fluorinated iron phthalocyanine (FeFPc) supported on cheap and commercially available high-surface area carbon─BP2000 (FeFPc@BP2000). It exhibits the highest activity ever reported for molecular catalysts under alkaline conditions in half-cells and fuel cells.
Collapse
Affiliation(s)
- Ariel Friedman
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Michal Mizrahi
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Naomi Levy
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Noam Zion
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Michael Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lior Elbaz
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
13
|
Patniboon T, Hansen HA. Acid-Stable and Active M–N–C Catalysts for the Oxygen Reduction Reaction: The Role of Local Structure. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02941] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tipaporn Patniboon
- Technical University of Denmark Anker Engelunds Vej, Kongens Lyngby 2800, Denmark
| | - Heine Anton Hansen
- Technical University of Denmark Anker Engelunds Vej, Kongens Lyngby 2800, Denmark
| |
Collapse
|
14
|
Gai Y. Oxygen Evolution and Reduction Reaction Activity Investigations on Fe, Co or Ni embedded Tetragonal Graphene by A Thermodynamical Full-Landscape Searching Scheme. ChemistryOpen 2021; 10:672-680. [PMID: 33594818 PMCID: PMC8248917 DOI: 10.1002/open.202000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Single transition metal (TM) atoms such as Fe, Co and Ni occupying a carbon divacancy in tetragonal graphene (TG) and bonded with four nitrogen atoms (TM@N4 TG) as electrocatalysts are investigated by means of first-principles calculations. To consider the effect of solvent species on the local configuration of the active single metal, a thermodynamical full-landscape searching (TFLS) scheme is employed. The calculated thermodynamic overpotentials (ηtd ) from our TFLS indicate that Co@N4 TG displays high catalytic activity toward both oxygen evolution reaction (OER) and reduction reaction (ORR), with ηtd OER and ηtd ORR as 0.397 and 0.357 V, respectively. Its OER potential cannot be captured if only one four electron reaction loop (FERL) is considered. The actual active pathways do not always turn out to be the reactions starting from the bare site. Our findings demonstrate that TG is a promising support and TM confined TD can be used to design effective and cheap multifunctional electrocatalysts.
Collapse
Affiliation(s)
- Yanqin Gai
- School of Materials science and PhysicsChina University of Mining and TechnologyXuzhou, Jiangsu221116China
| |
Collapse
|
15
|
Theoretical screening of VSe2 as support for enhanced electrocatalytic performance of transition-metal single atoms. J Colloid Interface Sci 2021; 590:210-218. [DOI: 10.1016/j.jcis.2021.01.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 01/23/2023]
|
16
|
Zhou Y, Gao G, Chu W, Wang LW. Transition-metal single atoms embedded into defective BC 3 as efficient electrocatalysts for oxygen evolution and reduction reactions. NANOSCALE 2021; 13:1331-1339. [PMID: 33410443 DOI: 10.1039/d0nr07580a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Searching for high-activity, stable and low-cost catalysts toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are of significant importance to the development of renewable energy technologies. By using the computational screening method based on the density functional theory (DFT), we have systematically studied a wide range of transition metal (TM) atoms doped a defective BC3 monolayer (B atom vacancy VB and C atom vacancy VC), denoted as TM@VB and TM@VC (TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir and Pt), as efficient single atom catalysts for OER and ORR. The calculated results show that all the considered TM atoms can tightly bind with the defective BC3 monolayers to prevent the atomically dispersed atoms from clustering. The interaction strength between intermediates (HO*, O* and HOO*) and catalyst govern the catalytic activities of OER and ORR, which has a direct correlation with the d-band center (εd) of the TM active site that can be tuned by adjusting TM atoms with various d electron numbers. For TM@VB catalysts, it was found that the best catalyst for OER is Co@VB with an overpotential ηOER of 0.43 V, followed by Rh@VB (ηOER = 0.49 V), while for ORR, Rh@VB exhibits the lowest overpotential ηORR of 0.40 V, followed by Pd@VB (ηORR = 0.45 V). For TM@VC catalysts, the best catalyst for OER is Ni@VC (ηOER = 0.47 V), followed by Pt@VC (ηOER = 0.53 V), and for ORR, Pd@VC exhibits the highest activity with ηORR of 0.45 V. The results suggest that the high activity of the newly predicted well dispersed Rh@VB SAC is comparable to that of noble metal oxide benchmark catalysts for both OER and ORR. Importantly, Rh@VB may remain stable against dissolution at pH = 0 condition. The high energy barrier prevents the isolated Rh atom from clustering and ab initio molecule dynamic simulation (AIMD) result suggests that Rh@VB can remain stable under 300 K, indicating its kinetic stability. Our findings highlight a novel family of efficient and stable SAC based on carbon material, which offer a useful guideline to screen the metal active site for catalyst designation.
Collapse
Affiliation(s)
- Yanan Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China. and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA.
| | - Guoping Gao
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA.
| | - Wei Chu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Lin-Wang Wang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA.
| |
Collapse
|