Sun Z, Wang Y, Hashemi M, Lyubchenko YL. Restriction of RecG translocation by DNA mispairing.
Biochim Biophys Acta Gen Subj 2021;
1865:130006. [PMID:
34520825 PMCID:
PMC8511092 DOI:
10.1016/j.bbagen.2021.130006]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND
The RecG DNA helicase plays a crucial role in stalled replication fork rescue. We have recently discovered that interaction of RecG with single-strand DNA binding protein (SSB) remodels RecG, allowing it to spontaneously translocate upstream of the fork. Based on these findings, we hypothesized that mispairing of DNA could limit such translocation of RecG.
METHODS
Here, we used atomic force microscopy (AFM) to directly test this hypothesis and investigate how sensitive RecG translocation is to different types of mispairing.
RESULTS
We found that a CC mispairing, at a distance of 30 bp from the fork position, prevents translocation of RecG over this mispairing. A G-bulge, placed at the same distance, also has a similar blocking efficiency. However, a CC mispairing, 10 bp away from the fork, does not prevent RecG translocation beyond 10 bp distance, but decreases complex yield. Modeling of RecG-DNA complexes show that 10 bp distance from the fork is within the binding footprint of RecG on DNA.
CONCLUSIONS
Our results suggest that the RecG translocation upstream of the replication fork is limited by mispairings in the parental arm of the replication fork. General significance These findings led us to propose dual functions for RecG, in which the thermally driven translocation of RecG can be a mechanism for the additional control of the DNA paring in which RecG can detect the lesions in front of the replication fork, adding to the fidelity of the DNA replication machinery.
Collapse