1
|
Ma S, Li Y, Cui D, Yang G, Wang L, Ran G. In situ TEM investigation of nucleation and crystallization of hybrid bismuth nanodiamonds. NANOSCALE 2023; 15:8762-8771. [PMID: 37185584 DOI: 10.1039/d3nr01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Despite great progress in the non-classical homogeneous nucleation and crystallization theory, the heterogeneous processes of atomic nucleation and crystallization remain poorly understood. Abundant theories and experiments have demonstrated the detailed dynamics of homogeneous nucleation; however, intensive dynamic investigations on heterogeneous nucleation are still rare. In this work, in situ transmission electron microscopy (TEM) at the atomic scale was carried out with temporal resolution for heterogeneous nucleation and crystallization. The results show a reversible amorphous to crystal phase transformation that is manipulated by the size threshold effect. Moreover, the two growth pathways of Bi particles can be mainly assigned to the atomic adsorption expansion in the amorphous state and effective fusion in the crystal contact process. These interesting findings, based on a real dynamic imaging system, strongly enrich and improve our understanding of the dynamic mechanisms in the non-classical heterogeneous nucleation and crystallization theory, providing insights into designing innovative materials with controlled microstructures and desired physicochemical properties.
Collapse
Affiliation(s)
- Sihan Ma
- College of Energy, Xiamen University, Xiamen city, Fujian Province, 361002, China.
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361002, China
| | - Yipeng Li
- College of Energy, Xiamen University, Xiamen city, Fujian Province, 361002, China.
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361002, China
| | - Dewang Cui
- College of Energy, Xiamen University, Xiamen city, Fujian Province, 361002, China.
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361002, China
| | - Gang Yang
- College of Energy, Xiamen University, Xiamen city, Fujian Province, 361002, China.
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361002, China
| | - Lin Wang
- Department of Oncology, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen 361004, Fujian Province, China
- School of Medicine, Xiamen University, Xiamen city, Fujian Province, 361002, China.
| | - Guang Ran
- College of Energy, Xiamen University, Xiamen city, Fujian Province, 361002, China.
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361002, China
| |
Collapse
|
2
|
Zhu S, Deng D, Nguyen MT, Chau YTR, Wen CY, Yonezawa T. Synthesis of Au@Cu 2O Core-Shell Nanoparticles with Tunable Shell Thickness and Their Degradation Mechanism in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3386-3392. [PMID: 32176501 DOI: 10.1021/acs.langmuir.0c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metal@semiconductor core-shell nanoparticles (NPs) are widely used in photocatalysts, sensors, and optical applications owing to their unique metal-semiconductor interface and the integration of the properties from both core and shell materials. Although many efforts have been made toward the precise synthesis of Au@Cu2O core-shell structures, the chemical stability of Au@Cu2O aqueous suspensions, which is of great significance in many related applications, is not mentioned in any published research. Herein we report the synthesis of Au@Cu2O core-shell NPs with small shell thickness from 2 to 40 nm through a wet-chemistry method. The UV-vis absorption properties are found to be tunable with Cu2O thickness in the range of 2-40 nm. Furthermore, the chemical stability of Au@Cu2O core-shell nanoparticle suspensions in water/ethanol mixed solvents is investigated. It is found that water/ethanol mixed solvents with a larger amount of water are more likely to deteriorate the stability of Au@Cu2O NPs by oxidizing Cu2O to CuO. The results from this work may provide useful information for the preparation of metal@Cu2O water-based suspensions that are expected to be used for SERS, photocatalyst, or photothermal applications.
Collapse
Affiliation(s)
- Shilei Zhu
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Dan Deng
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yuen-Ting Rachel Chau
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Cheng-Yen Wen
- Department of Materials Science and Engineering, Center of Atomic Initiative for New Materials, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Da'an District, Taipei, 10617, Taiwan
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Institute for the Promotion of Business-Regional Collaboration, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|