1
|
Sousa JLC, Albuquerque HMT, Silva AMS. Drug Discovery Based on Oxygen and Nitrogen (Non-)Heterocyclic Compounds Developed @LAQV-REQUI MTE/Aveiro. Pharmaceuticals (Basel) 2023; 16:1668. [PMID: 38139794 PMCID: PMC10747949 DOI: 10.3390/ph16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Artur Silva's research group has a long history in the field of medicinal chemistry. The development of new synthetic methods for oxygen (mostly polyphenols, e.g., 2- and 3-styrylchromones, xanthones, flavones) and nitrogen (e.g., pyrazoles, triazoles, acridones, 4-quinolones) heterocyclic compounds in order to be assessed as antioxidant, anti-inflammatory, antidiabetic, and anticancer agents has been the main core work of our research interests. Additionally, the synthesis of steroid-type compounds as anti-Alzheimer drugs as well as of several chromophores as important dyes for cellular imaging broadened our research scope. In this review article, we intend to provide an enlightened appraisal of all the bioactive compounds and their biological properties that were synthesized and studied by our research group in the last two decades.
Collapse
Affiliation(s)
| | | | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.L.C.S.); (H.M.T.A.)
| |
Collapse
|
2
|
Silva VLM, Silva AMS. Revisiting the Chemistry of Vinylpyrazoles: Properties, Synthesis, and Reactivity. Molecules 2022; 27:molecules27113493. [PMID: 35684432 PMCID: PMC9182008 DOI: 10.3390/molecules27113493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Vinylpyrazoles, also known as pyrazolyl olefins, are interesting motifs in organic chemistry but have been overlooked. This review describes the properties and synthetic routes of vinylpyrazoles and highlights their versatility as building blocks for the construction of more complex organic molecules. Concerning the reactivity of vinylpyrazoles, the topics surveyed herein include their use in cycloaddition reactions, free-radical polymerizations, halogenation and hydrohalogenation reactions, and more recently in transition-metal-catalyzed reactions, among other transformations. The current state of the art about vinylpyrazoles is presented with an eye to future developments regarding the chemistry of these interesting compounds. Styrylpyrazoles were not considered in this review, as they were the subject of a previous review article published in 2020.
Collapse
|
3
|
Itakhunov RN, Odin IS, Gusev DM, Grabovskiy SA, Gordon KV, Vologzhanina AV, Sokov SA, Sosnin IM, Golovanov AA. Cyclization of arylhydrazones of cross-conjugated enynones: synthesis of luminescent styryl-1 H-pyrazoles and propenyl-1 H-pyrazoles. Org Biomol Chem 2022; 20:8693-8713. [DOI: 10.1039/d2ob01427k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
On the basis of available ethynyl vinyl ketones and arylhydrazines, the authors have developed the two-stage synthesis method for styrylpyrazoles possessing fluorescent abilities, as well as the gram-scale synthesis method for fluorescent probes.
Collapse
Affiliation(s)
- Radik N. Itakhunov
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Ivan S. Odin
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Dmitry M. Gusev
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Stanislav A. Grabovskiy
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
- Laboratory of Chemical Kinetics, Ufa Institute of Chemistry, UFRS of the Russian Academy of Science, October Av. 71, Ufa, 450054, Russia
| | - Kareem V. Gordon
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Anna V. Vologzhanina
- Laboratory for X-Ray Diffraction Studies – X-Ray Structural Centre (XRSC), A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Science, 28 Vavilova Str., Moscow, 119334, Russia
| | - Sergey A. Sokov
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Ilya M. Sosnin
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| | - Alexander A. Golovanov
- S. P. Korshunov Research Laboratory No. 13, Department Chemical Technology and Resource Conservation, Togliatti State University, Belorusskaya Str. 14, Togliatti, 445020, Russia
| |
Collapse
|
4
|
Pyrazoles as Key Scaffolds for the Development of Fluorine-18-Labeled Radiotracers for Positron Emission Tomography (PET). Molecules 2020; 25:molecules25071722. [PMID: 32283680 PMCID: PMC7181023 DOI: 10.3390/molecules25071722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The need for increasingly personalized medicine solutions (precision medicine) and quality medical treatments, has led to a growing demand and research for image-guided therapeutic solutions. Positron emission tomography (PET) is a powerful imaging technique that can be established using complementary imaging systems and selective imaging agents—chemical probes or radiotracers—which are drugs labeled with a radionuclide, also called radiopharmaceuticals. PET has two complementary purposes: selective imaging for diagnosis and monitoring of disease progression and response to treatment. The development of selective imaging agents is a growing research area, with a high number of diverse drugs, labeled with different radionuclides, being reported nowadays. This review article is focused on the use of pyrazoles as suitable scaffolds for the development of 18F-labeled radiotracers for PET imaging. A brief introduction to PET and pyrazoles, as key scaffolds in medicinal chemistry, is presented, followed by a description of the most important [18F]pyrazole-derived radiotracers (PET tracers) that have been developed in the last 20 years for selective PET imaging, grouped according to their specific targets.
Collapse
|