1
|
Wen T, Xiong S, Zhao H, Wang J, Wang C, Long Z, Xiong L, Qian G. Polylactic acid-based dressing with oxygen generation and enzyme-like activity for accelerating both light-driven biofilm elimination and wound healing. BURNS & TRAUMA 2024; 12:tkae041. [PMID: 39464502 PMCID: PMC11510456 DOI: 10.1093/burnst/tkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 10/29/2024]
Abstract
Background Photodynamic therapy (PDT) is a widely used therapeutic approach for eradicating bacterial biofilms in infected wound, but its effectiveness is limited by the hypoxic environment within the biofilm. This study aimed to investigate whether the efficiency of photodynamic removing biofilm is improving by providing oxygen (O2), as well as the expression of cytokines involved in infected wound healing. Methods Manganese dioxide (MnO2) nanoparticles with catalase-like activity were grown in situ on graphitic phase carbon nitride (g-C3N4, CN) nanosheets to construct an all-in-one CN-MnO2 nanozyme, which was then incorporated into poly-L-lactic acid (PLLA) to prepare CN-MnO2/PLLA wound dressing by electrospinning. Subsequently, the in vitro antibacterial biofilm ratio and antibacterial ratio of CN-MnO2/PLLA wound dressing were examined by spread plate and crystal violet staining under irradiation with 808 nm near-infrared light and 660 nm visible light. Meanwhile, the rat skin injury model was established, and hematoxylin and eosin (H&E), Masson's, tumor necrosis factor-α (TNF-α), Arginase 1 (Arg-1), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (BFGF) were evaluated in vivo to assess the effect of CN-MnO2/PLLA wound dressing on wound healing. Results Biofilm density caused by Staphylococcus aureus and Pseudomonas aeruginosa had elimination rates of 83 and 62%, respectively, when treated with CN-MnO2/PLLA dressing. Additionally, the dressing exhibited high antibacterial efficacy against both bacteria, achieving 99 and 98.7% elimination of Staphylococcus aureus and Pseudomonas aeruginosa, respectively. Furthermore, in vivo experiments showed that the CN-MnO2/PLLA wound dressing achieved complete healing of infected wounds on Day 14, with a wound healing rate of >99% by increasing collagen deposition, expression of anti-inflammatory cytokine Arg-1, vascularization cytokine VEGF, and epithelial cell BFGF, and inhibiting the expression of inflammatory cytokine TNF-α. Conclusions The CN-MnO2/PLLA wound dressing exhibited excellent antibacterial properties in vitro and in vivo. In addition, CN-MnO2/PLLA wound dressing accelerated rapid wound healing through an anti-inflammatory, pro-vascular regeneration and skin tissue remodeling mechanism.
Collapse
Affiliation(s)
- Tianci Wen
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, No. 1180, Shuanggang East Street, Qingshanhu District, Nanchang City, Jiangxi Province 330013, P.R. China
| | - Shilang Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, P.R. China
| | - Huihui Zhao
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, No. 1180, Shuanggang East Street, Qingshanhu District, Nanchang City, Jiangxi Province 330013, P.R. China
| | - Junzhe Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, No. 1180, Shuanggang East Street, Qingshanhu District, Nanchang City, Jiangxi Province 330013, P.R. China
| | - Chunming Wang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, No. 1180, Shuanggang East Street, Qingshanhu District, Nanchang City, Jiangxi Province 330013, P.R. China
| | - Zhisheng Long
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 152, Aiguo Road, Donghu District, Nanchang City, Jiangxi Province 330006, P.R. China
| | - Long Xiong
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang City, Jiangxi Province 330008, P.R. China
| | - Guowen Qian
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, No. 1180, Shuanggang East Street, Qingshanhu District, Nanchang City, Jiangxi Province 330013, P.R. China
| |
Collapse
|
2
|
Fan K, Chen Q, Zhao J, Liu Y. Preparation of MnO 2-Carbon Materials and Their Applications in Photocatalytic Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:541. [PMID: 36770501 PMCID: PMC9921467 DOI: 10.3390/nano13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Water pollution is one of the most important problems in the field of environmental protection in the whole world, and organic pollution is a critical one for wastewater pollution problems. How to solve the problem effectively has triggered a common concern in the area of environmental protection nowadays. Around this problem, scientists have carried out a lot of research; due to the advantages of high efficiency, a lack of secondary pollution, and low cost, photocatalytic technology has attracted more and more attention. In the past, MnO2 was seldom used in the field of water pollution treatment due to its easy agglomeration and low catalytic activity at low temperatures. With the development of carbon materials, it was found that the composite of carbon materials and MnO2 could overcome the above defects, and the composite had good photocatalytic performance, and the research on the photocatalytic performance of MnO2-carbon materials has gradually become a research hotspot in recent years. This review covers recent progress on MnO2-carbon materials for photocatalytic water treatment. We focus on the preparation methods of MnO2 and different kinds of carbon material composites and the application of composite materials in the removal of phenolic compounds, antibiotics, organic dyes, and heavy metal ions in water. Finally, we present our perspective on the challenges and future research directions of MnO2-carbon materials in the field of environmental applications.
Collapse
Affiliation(s)
- Kun Fan
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Qing Chen
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
- Ecological and Environmental Protection Company, China South-to-North Water Diversion Corporation Limited, Beijing 100036, China
| | - Jian Zhao
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yue Liu
- Chinese Research Academy of Environment Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Morphological engineering of 3D hollow urchin-like MnO2 spheres as bifunctional oxygen electrocatalyst for zinc-air batteries. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Zhao Z, Xing L, Feng Q, Han L. A novel colorimetric fluorescent probe for detecting hydrazine in living cells and zebrafish. LUMINESCENCE 2022; 37:995-1000. [PMID: 35411700 DOI: 10.1002/bio.4251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/07/2022]
Abstract
Hydrazine (NH2 NH2 ) is a highly toxic organic substance that poses threat to human health. Monitoring hydrazine with high sensitivity and selectivity is very important. Herein, a simple colorimetric fluorescent probe for hydrazine detection, which is a seminaphthorhodafluor derivative containing thiophene-2-carboxylic acid ester reaction site, was rationally constructed. The probe itself exhibits weak fluorescence. The fluorescence is significantly enhanced when hydrazine is added. The probe exhibited a broad linear range (0-1 mM) with satisfactory selectivity and sensitivity (LOD 36.4 nM), which turns out to be an excellent fluorescent probe for monitoring hydrazine. Additionally, the probe was used to track hydrazine in living cells and zebrafish with great success, and the detection performance was satisfying. These results proved that this type of fluorescent probe with the thiophene-2-carboxylic acid ester structure can detect hydrazine with higher selectivity and sensitivity.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Jinan, China
| | - Liting Xing
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Jinan, China
| | - Quanlin Feng
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Jinan, China
| | - Lin Han
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Jinan, China
| |
Collapse
|
6
|
Kumari S, Sharma KS, Nemiwal M, Khan S, Kumar D. Simultaneous detection of aqueous aluminum(III) and chromium(III) using Persea americana reduced and capped silver nanoparticles. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:808-821. [PMID: 34559600 DOI: 10.1080/15226514.2021.1977911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is a significant interest to develop sensing devices that detect water toxins, especially heavy metal ions. Although there have already been numerical reports on detecting toxic heavy metal ions, the use of adaptable devices could enable a broader range of sensing applications. Here, we used fresh peel extract (PeA) and dried peel extract (DPeA) of Persea americana (Avocado) as a reducing and capping agent to synthesize and stabilize AgNPs. The dimensions of NPs were controlled by tuning pH, temperature, and volume of the reducing agent. The sensitivity and selectivity of the AgNPs toward various metal ions viz. Ni(II), Cd(II), Al(III), Hg(II), Cr(III), Ba(II), Pb(II), Zn(II), Co(II), Mn(II), Cu(II), Ca(II), Mg(II), and K(I) were studied. The detection probe was found to be selective and sensitive toward Al(III) and Cr(III) ions with the detection limit of 0.04 ppm and 0.05 ppm, respectively. High-resolution transmission electron microscope (HRTEM), ultraviolet-visible (UV-Vis) spectroscopy, and dynamic light scattering (DLS) analysis results confirm an agglomeration-based mechanism for sensing both metal ions. This method can be exploited for the colorimetric detection of toxic heavy metals in real water samples.
Collapse
Affiliation(s)
- Sandhya Kumari
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - Kritika S Sharma
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Suphiya Khan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
7
|
Tu W, Liu Y, Xie Z, Chen M, Ma L, Du G, Zhu M. A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. J Colloid Interface Sci 2021; 593:390-407. [PMID: 33744547 DOI: 10.1016/j.jcis.2021.02.133] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
A two-stage method of hydrothermal carbonization and chemical activation technology was applied to prepare a novel, large surface area and rich-pore structure activation-hydrochar from sludge sewage and coconut shell due to its mild, low-cost, and well-developed merits. The pore-making mechanism of activation-hydrochar was discussed by FT-IR, XPS, SEM, TG, TG-MS, XRD, and BET characterization. These results illustrated that the first stage of hydrothermal carbonization achieved the rich-pore structure hydrochar via dehydration, decarboxylation, deamination, and rearrangement reactions. The subsequent KOH activation was conducive to the pore-forming process. Specifically, the pore structure of activation-hydrochar was ameliorated and abundant active adsorption sites were obtained by the modification. The adsorption properties of activation-hydrochar on Methylene Blue (MB) and Congo Red (CR) were systematically investigated, and the max adsorption capacities of those were obtained with 623.37 mg/g and 228.25 mg/g, respectively. The pseudo-second-order kinetics and Langmuir models were both fit to elucidate the adsorption process for both dyes. Thermodynamics revealed adsorption performance accompanied by the spontaneous and endothermic processes. In general, the research clearly indicated the synthesis route for activation-hydrochar, and its further adsorption performance, capacity, and mechanism on MB and CR. This research demonstrated that activation-hydrochar with the abundant surface area and rich-pore structure made it a candidate for the production of effective adsorption material. It is prospective to achieve the utilization of wastes and its further application in wastewater treatment.
Collapse
Affiliation(s)
- Wenwen Tu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China.
| | - Zhengfeng Xie
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Mingyan Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Lili Ma
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, PR China
| | - Guoyong Du
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Meng Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
8
|
Wu X, Zhong W, Ma H, Hong X, Fan J, Yu H. Ultra-small molybdenum sulfide nanodot-coupled graphitic carbon nitride nanosheets: Trifunctional ammonium tetrathiomolybdate-assisted synthesis and high photocatalytic hydrogen evolution. J Colloid Interface Sci 2021; 586:719-729. [PMID: 33228958 DOI: 10.1016/j.jcis.2020.10.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022]
Abstract
The preparation of nanoscale molybdenum sulfide (MoS2)-modified graphitic carbon nitride (g-C3N4) nanosheets usually contains complex and multiple-step operations, including the separate synthesis of nanoscale MoS2 and g-C3N4 nanosheet, and their subsequent composite process. To effectively overcome the above drawbacks, herein, a facile one-step trifunctional ammonium tetrathiomolybdate ((NH4)2MoS4)-assisted approach has been designed to produce ultra-small MoSx nanodot-coupled g-C3N4 nanosheet photocatalyst, including the first addition of ammonium chloride (NH4Cl) and (NH4)2MoS4 into melamine precursors and their following one-step calcination. During high-temperature calcination, except for the promoting generation of the g-C3N4 nanosheets by produced ammonia (NH3) and hydrogen sulfide (H2S) gases, the above (NH4)2MoS4 decomposition not only can efficiently clip the s-heptazine framework to produce more terminal amino groups and cyano groups, but also can produce ultra-small MoSx nanodots on the resultant g-C3N4 nanosheet surface, resulting in the final production of ultra-small MoSx nanodot-coupled g-C3N4 nanosheets. The resultant MoSx nanodot-coupled g-C3N4 nanosheets evidently exhibit increased photocatalytic hydrogen (H2)-generation rate, about 8-fold increase to the traditional MoS2-modified g-C3N4 photocatalyst. The increased H2-generation rate can be mainly attributed to the synergism of MoSx nanodots and cyano group on the g-C3N4 nanosheet surface. The current facile technology could open the sights for the preparation of other high-efficiency photocatalysts.
Collapse
Affiliation(s)
- Xinhe Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Wei Zhong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Haiqin Ma
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xuekun Hong
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, PR China.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, PR China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
9
|
Yang R, Fan Y, Ye R, Tang Y, Cao X, Yin Z, Zeng Z. MnO 2 -Based Materials for Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004862. [PMID: 33448089 DOI: 10.1002/adma.202004862] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Manganese dioxide (MnO2 ) is a promising photo-thermo-electric-responsive semiconductor material for environmental applications, owing to its various favorable properties. However, the unsatisfactory environmental purification efficiency of this material has limited its further applications. Fortunately, in the last few years, significant efforts have been undertaken for improving the environmental purification efficiency of this material and understanding its underlying mechanism. Here, the aim is to summarize the recent experimental and computational research progress in the modification of MnO2 single species by morphology control, structure construction, facet engineering, and element doping. Moreover, the design and fabrication of MnO2 -based composites via the construction of homojunctions and MnO2 /semiconductor/conductor binary/ternary heterojunctions is discussed. Their applications in environmental purification systems, either as an adsorbent material for removing heavy metals, dyes, and microwave (MW) pollution, or as a thermal catalyst, photocatalyst, and electrocatalyst for the degradation of pollutants (water and gas, organic and inorganic) are also highlighted. Finally, the research gaps are summarized and a perspective on the challenges and the direction of future research in nanostructured MnO2 -based materials in the field of environmental applications is presented. Therefore, basic guidance for rational design and fabrication of high-efficiency MnO2 -based materials for comprehensive environmental applications is provided.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Yingying Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Ruquan Ye
- Department of Chemistry, State Key Lab of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
10
|
Sambathkumar S, Manivannan C, Baskaran S, Kumar RR, Anbazhagan V. A study on the interaction of nile blue with Uracils: A spectroscopic and computational approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119011. [PMID: 33038853 DOI: 10.1016/j.saa.2020.119011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The present work focuses the investigation on fluorescence quenching of nile blue (NB) in presence of various substituted uracil molecules. UV-Visible absorption studies signify the possibility of ground state complex formation between NB and uracil molecules. The increase in concentration of quencher molecules greatly influences the emission spectra of NB. The bimolecular quenching rate constant (kq) were calculated and found to depend on the position and electronic properties of substituent in quencher molecules. Fluorescence quenching experiments were performed at different temperature to calculate the thermodynamic parameters. The fluorescence lifetime measurements show that the quenching process proceeds through static quenching. The mechanism of fluorescence quenching includes the possibility of proton transfer. The bond dissociation enthalpy (BDE) reveals the release of H from the quencher molecules. The quencher molecules possess antioxidant activity and identified using deoxyribose degradation assay. The position of substituent and its electronic property are key features to address the antioxidant activity of uracil molecules.
Collapse
Affiliation(s)
- S Sambathkumar
- PG and Research Department of Chemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Tiruchengode, Namakkal 637 205, Tamil Nadu, India.
| | - C Manivannan
- Photonics Laboratory, Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Erode, Tamil Nadu, India
| | - S Baskaran
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - R Raj Kumar
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - V Anbazhagan
- Department of Chemistry, Vinayaka Mission's Kirupananda Variyar Arts and Science College, Vinayaka Missions Research Foundation (Deemed to be University), Salem 636 308, Tamil Nadu, India
| |
Collapse
|
11
|
Chen Y, Zhu Y, Zhao Y, Wang J. Fluorescent and colorimetric dual-response sensor based on copper (II)-decorated graphitic carbon nitride nanosheets for detection of toxic organophosphorus. Food Chem 2020; 345:128560. [PMID: 33601648 DOI: 10.1016/j.foodchem.2020.128560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/11/2020] [Accepted: 11/01/2020] [Indexed: 01/17/2023]
Abstract
An efficient and convenient detection method for organophosphorus pesticide (OP) residues is needed because of their high neurotoxicity and severe threat to food safety. OPs effectively reduce the production of thiocholine in the acetylcholinesterase/acetylthiocholine reaction by inhibiting the activity of acetylcholinesterase. Therefore, we developed a feasible and convenient fluorescent and colorimetric dual-response sensor based on the competitive complexation of Cu2+ between graphitic carbon nitride nanosheets and thiocholine for the rapid detection of OPs with high sensitivity. Malathion was used as a model OP, and a linear range of 70-800 nM with a detection limit of 6.798 nM for a fluorescent signaling platform and 2.5-25 nM with a detection limit of 1.204 nM for a colorimetric probe were attained. The constructed probe was successfully applied to determine OP in actual samples of cabbages leaves and tap water. The results indicated that the dual-response probe was reliable and sensitive to actual samples.
Collapse
Affiliation(s)
- Yao Chen
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yanyan Zhu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yuhui Zhao
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
12
|
Bonyadi S, Ghanbari K, Ghiasi M. All-electrochemical synthesis of a three-dimensional mesoporous polymeric g-C3N4/PANI/CdO nanocomposite and its application as a novel sensor for the simultaneous determination of epinephrine, paracetamol, mefenamic acid, and ciprofloxacin. NEW J CHEM 2020. [DOI: 10.1039/c9nj05954g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mpg-C3N4/PANI/CdO nanocomposite was electrochemically synthesized and used for simultaneous determination of EPI, PAR, MFA, and CIP. Also, HOMO and LUMO eigenvalues of the EPI, PAR, MFA and CIP molecules have been evaluated using the DFT method.
Collapse
Affiliation(s)
- S. Bonyadi
- Department of Chemistry
- Faculty of Physics and Chemistry
- School of Science
- Alzahra University
- Tehran 1993891167
| | - Kh. Ghanbari
- Department of Chemistry
- Faculty of Physics and Chemistry
- School of Science
- Alzahra University
- Tehran 1993891167
| | - M. Ghiasi
- Department of Chemistry
- Faculty of Physics and Chemistry
- School of Science
- Alzahra University
- Tehran 1993891167
| |
Collapse
|
13
|
Zhuo Z, Jiao Y, Chen L, Li H, Dai M, Lin Z, Yang H, Fu F, Dong Y. Ultra-high quantum yield ultraviolet fluorescence of graphitic carbon nitride nanosheets. Chem Commun (Camb) 2019; 55:15065-15068. [PMID: 31777871 DOI: 10.1039/c9cc07448a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Graphitic carbon nitride (g-CN) nanosheets (CNNs) with an ultra-high quantum yield (80.1%) ultraviolet fluorescence (FL) were prepared. The effects of the lateral size and the polymerization temperature on the optical properties of CNNs have been studied. The ultraviolet FL was proved to have originated from the isolated melem units according to the density functional theory calculation and mass spectra. The obtained CNNs are further used as a pH probe due to the dependence of the FL signal on the pH of the solution.
Collapse
Affiliation(s)
- Zesheng Zhuo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|