1
|
Cosentino F, Michenzi C, Di Noi A, Salvitti C, Pepi F, de Petris G, Chiarotto I, Troiani A. Photo-activated Carbon dots (CDs) as Catalysts in the Knoevenagel Condensation: A Mechanistic Study by Dual-Mode Monitoring via ESI-MS. Chempluschem 2024; 89:e202400174. [PMID: 38771069 DOI: 10.1002/cplu.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Carbon dots (CDs) obtained from 5-(hydroxymethyl)furfural (5-HMF) were activated by a 365 nm-UV irradiation source and employed in the Knoevenagel condensation to investigate their photocatalytic mechanism. To this end, electrospray ionization mass spectrometry (ESI-MS) was used to monitor the time progress of the condensation and follow the formation of the final product in positive and negative ion modes at once. The intervention of the superoxide radical anion in the photocatalytic mechanism of CDs was highlighted.
Collapse
Affiliation(s)
- Francesca Cosentino
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Cinzia Michenzi
- Department of Basic and Applied Sciences for Engineering, "Sapienza" University of Rome, Via Castro Laurenziano 7, 00161, Roma, Italy
| | - Alessia Di Noi
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Chiara Salvitti
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Federico Pepi
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Giulia de Petris
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| | - Isabella Chiarotto
- Department of Basic and Applied Sciences for Engineering, "Sapienza" University of Rome, Via Castro Laurenziano 7, 00161, Roma, Italy
| | - Anna Troiani
- Department of Chemistry and Technology of Drugs, "Sapienza" University of Rome P.le Aldo, Moro 5, 00185, Roma, Italy
| |
Collapse
|
2
|
Mushtaq S, Bi S, Zhang F, Naseer MM. Fully unsaturated all-carbon bifluorenylidene-based polymeric frameworks: synthesis and efficient photocatalysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj02405e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated porous polymers with fully unsaturated all-carbon frameworks possess strong visible light-absorbing abilities, enabling efficient photodegradation of dye pollutants.
Collapse
Affiliation(s)
- Sidra Mushtaq
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | |
Collapse
|
3
|
Kotnik T, Žerjav G, Pintar A, Žagar E, Kovačič S. Highly Porous Poly(arylene cyano-vinylene) Beads Derived through the Knoevenagel Condensation of the Oil-in-Oil-in-Oil Double Emulsion Templates. ACS Macro Lett 2021; 10:1248-1253. [PMID: 35549042 DOI: 10.1021/acsmacrolett.1c00457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugated porous polymers through the emulsion-templating polymerization process are typically prepared as monoliths, and the emulsions are cured via metal-catalyzed cross-coupling reactions. Herein, we report the design and synthesis of well-defined, millimeter-sized conjugated porous polymer beads by combining an oil-in-oil-in-oil (O/O/O) double emulsion as a de novo template and an amino-catalyzed Knoevenagel condensation reaction as a polymerization chemistry to cure such emulsions. The 1,4-phenylenediacetonitrile is reacted with aromatic multialdehydes in the presence of piperidine, and a series of metal-free poly(arylene cyano-vinylene) beads are prepared. All beads exhibit 3D-interconnected microcellular morphology and substantial semiconducting properties, such as strong light harvesting ability in the visible light region with electrochemical band gaps in the range of 2.05-2.33 eV. Finally, the promising photocatalytic activity of these conjugated beads is demonstrated for a model sulfoxidation reaction under visible light irradiation, and near quantitative conversions with excellent chemoselectivities (>99%) are obtained.
Collapse
Affiliation(s)
- Tomaž Kotnik
- National Institute of Chemistry, Department of Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Gregor Žerjav
- National Institute of Chemistry, Department of Inorganic Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Albin Pintar
- National Institute of Chemistry, Department of Inorganic Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- National Institute of Chemistry, Department of Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Sebastijan Kovačič
- National Institute of Chemistry, Department of Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Schrage BR, Farmer CA, Nemykin VN, Ziegler CJ. The synthesis and characterization of ylideneisoindolinones. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
1,3-Diiminoisoindoline (DII) and the closely related molecule, iminoisoindolinone are important precursors in the synthesis of macrocycles and chelates such as phthalocyanines, and bis(arylimino)isoindolines, as well as chromophores including aza-BODIPY dyes. A series of seven ylideneisoindolinones are presented in this report. The reaction of various organic CH acids and iminoisoindolinone produce compounds that show strong [Formula: see text]* transitions in the UV region. The chromophores have been characterized spectroscopically and the X-ray structures show electronic delocalization across the chromophore. Additionally, DFT and time-dependent DFT calculations confirm the lower energy absorbances are primarily HOMO-LUMO transitions.
Collapse
Affiliation(s)
- Briana R. Schrage
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, USA
| | - Colton A. Farmer
- Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, USA
| | - Victor N. Nemykin
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
5
|
Tang J, Fu H, Jiang X, Cheng Z, Liao Y, Pu Q, Duan M. Conjugated Cationic Pp- x Formed on g-C 3N 4 for Photocatalyzed Water Splitting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7668-7680. [PMID: 34126011 DOI: 10.1021/acs.langmuir.1c00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polycationic Pp-x@g-C3N4 composite was synthesized through an in situ polymerization process of N-alkylpyridinium acetylenic alcohol bromide (p-x) above the surface of g-C3N4. The structure of p-0 and the Pp-x@g-C3N4 properties were checked by modern technologies. Photocatalytic tests of Pp-x@g-C3N4 in water splitting unveiled much better Pp-x@g-C3N4 hydrogen evolution activities by comparison with both g-C3N4 and Pp-0. The hydrogen production by Pp-0@g-C3N4 was 1654.5 μmol h-1 g-1, which is ∼26- and 22-fold greater in relation to what g-C3N4 and Pp-0 produced (62.7 and 75.0 μmol h-1 g-1, respectively), suggesting strong bilateral and synergistic interactions of g-C3N4 with Pp-0. Although the lengthening methylene chain in the polymers weakened the hydrogen generation ability of Pp-x@g-C3N4, the conjugated double bonds, solubilization, and dispersion of Pp-x polycationic surfactants made Pp-x@g-C3N4 superior to g-C3N4 in water splitting. Due to the readily available raw materials, a simple way of preparation (starting chemicals to p-0 to Pp-0@g-C3N4), high photocatalysis efficiency, light irritation stability, recyclable ability, and low toxicity, Pp-0@g-C3N4 is a good candidate for water splitting.
Collapse
Affiliation(s)
- Jing Tang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637009, P. R. China
| | - Hongquan Fu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637009, P. R. China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637009, P. R. China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637009, P. R. China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637009, P. R. China
| | - Qiang Pu
- China Petroleum Engineering Company, Limited Southwest Company, Chengdu, Sichuan 610213, P. R. China
| | - Ming Duan
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|
6
|
Wang R, Sun X, Wang X, Chen J, Wang B, Ji W. Spherical conjugated microporous polymers for solid phase microextraction of carbamate pesticides from water samples. J Chromatogr A 2020; 1626:461360. [DOI: 10.1016/j.chroma.2020.461360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/13/2023]
|
7
|
Karri SN, Ega SP, Srinivasan P. Synthesis of novel fluorescent molecule and its polymeric form with aniline as fluorescent and supercapacitor electrode materials. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sangam Naidu Karri
- Polymers and Functional Materials DivisionCSIR – Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Sai Prasad Ega
- Polymers and Functional Materials DivisionCSIR – Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Palaniappan Srinivasan
- Polymers and Functional Materials DivisionCSIR – Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
8
|
Keshavarzi N, Cao S, Antonietti M. A New Conducting Polymer with Exceptional Visible-Light Photocatalytic Activity Derived from Barbituric Acid Polycondensation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907702. [PMID: 32129563 DOI: 10.1002/adma.201907702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/22/2020] [Indexed: 06/10/2023]
Abstract
A novel covalent, metal-free, photocatalytic material is prepared by thermal polymerization of barbituric acid (BA). The structure of the photocatalyst is analyzed by using scanning electron microscopy, X-ray diffraction, and infrared, UV-visible, and 1 H solution and 13 C solid-state NMR spectroscopy. The photodegradation efficiency of BA thermally polymerized at different temperatures is tested by photocatalytic degradation of aquatic rhodamine B (RhB) dye under visible-light irradiation. It is shown that heating BA at an optimized temperature of 300 °C, that is, still in the range that polymer-like polycondensation takes place, results in a photocatalyst that can remove RhB with 96% photodegradation efficiency after 70 min exposure to visible light. The polycondensation reaction of BA is identified to process through precipitation of trimer units as primary building blocks. Reference experiments such as addition of scavengers and saturation with oxygen are studied to understand the photodegradation process. It is shown that the presence of triethanolamine, and excess of oxygen and p-benzoquinone in the solution of RhB and photocatalyst (BA300) is not beneficial, but decreases the photodegradation efficiency.
Collapse
Affiliation(s)
- Neda Keshavarzi
- State Key Lab of Advanced Technology Materials Synthesis & Processing Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Shaowen Cao
- State Key Lab of Advanced Technology Materials Synthesis & Processing Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|