1
|
Yamada M. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Beilstein J Org Chem 2024; 20:125-154. [PMID: 38292046 PMCID: PMC10825803 DOI: 10.3762/bjoc.20.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Various push-pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push-pull chromophores prepared via the [2 + 2] CA-RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
2
|
Patil Y, Butenschön H, Misra R. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials. CHEM REC 2023; 23:e202200208. [PMID: 36202630 DOI: 10.1002/tcr.202200208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Indexed: 01/21/2023]
Abstract
This review describes the design strategies used for the synthesis of various tetracyanobutadiene bridged donor-acceptor molecular architectures by a click type [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction sequence. The photophysical and electrochemical properties of the tetracyanobutadiene bridged molecular architectures based on various moieties including diketopyrrolopyrrole, isoindigo, benzothiadiazole, pyrene, pyrazabole, truxene, boron dipyrromethene (BODIPY), phenothiazine, triphenylamine, thiazole and bisthiazole are summarized. Further, we discuss some important applications of the tetracyanobutadiene bridged derivatives in dye sensitized solar cells, bulk heterojunction solar cells and photothermal cancer therapy.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India.,Present Address: Institut des Sciences Chimiques de Rennes (ISCR) -, Université de Rennes 1, Rennes, 35700, France
| | - Holger Butenschön
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
3
|
Zhu W, Miao Z, Chu Y, Li L, Wang L, Wang D. Photoacoustic Effect of Near-Infrared Absorbing Organic Molecules via Click Chemistry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072329. [PMID: 35408728 PMCID: PMC9000579 DOI: 10.3390/molecules27072329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Near-infrared dyes were developed to be contrast agents due to their ability to improve the productivity of photoacoustic (PA) imaging and photothermal therapy (PTT) treatments. During the article, we described in detail the PA and PT effects of a category of organic molecules. F4-TCNQ could potentially cause a red-shift in the peak PA intensity. The results show that the PTT intensity of the near-infrared dyes with phenyl groups were higher than near-infrared dyes with thiophene groups. We also investigated the photodynamic treatment effect of C1b to demonstrate that these dyes are highly desirable in biochemistry. The high photoacoustic intensity of the organic molecules and the good yield of reactive oxygen species could indicate that these dyes have good potential for a wide range of imaging applications. Finally, we embedded the dye (C1b) in a liposomal hydrophobic phospholipid bilayer (C1b⊂L) to facilitate the application of hydrophobic dyes in biomedical applications, which can be absorbed by cells with good compatible and high stability for the imaging of cellular PA.
Collapse
Affiliation(s)
- Wenqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Y.C.)
| | - Zongcheng Miao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Y.C.)
- Correspondence: (Z.M.); (L.W.); (D.W.); Tel.: +86-189-9115-0632 (Z.M.)
| | - Yaqin Chu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Y.C.)
| | - Liaoliao Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lei Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (Z.M.); (L.W.); (D.W.); Tel.: +86-189-9115-0632 (Z.M.)
| | - Dong Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Correspondence: (Z.M.); (L.W.); (D.W.); Tel.: +86-189-9115-0632 (Z.M.)
| |
Collapse
|
4
|
Zhang Z, Gou G, Wan J, Li H, Wang M, Li L. Synthesis, Structure, and Significant Energy Gap Modulation of Symmetrical Silafluorene-Cored Tetracyanobutadiene and Tetracyanoquinodimethane Derivatives. J Org Chem 2022; 87:2470-2479. [PMID: 35080882 DOI: 10.1021/acs.joc.1c02382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of symmetrical tetracyanobutadiene and tetracyanoquinodimethane derivatives with a D-A-D'-A-D structural configuration and silafluorene core (D') were designed and readily synthesized via a [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction. We found that the photophysical properties and HOMO and LUMO energy levels and gaps of the silafluorene derivatives could be profoundly remolded through CA-RE reactions and modulated by varying the peripheral donor units from phenyl, m-dimethoxyphenyl, and N,N-dimethylaniline to triphenylamine groups. After CA-RE reactions, the HOMO-LUMO gaps of 1a-1j are in the range of 1.75-2.78 eV, with significant decreases of 0.52-1.46 eV compared to those of the parent silafluorene compounds 2a-2j. The intriguing crystal structures of 1f and 1j were analyzed and elucidated to show their unique potential porosity. The stability, electrochemical, and computational studies were systematically performed to unveil the reshaped electron-donating and -withdrawing nature in one molecular system. 1h-1j with peripherally strong amino donors exhibit an intense and broad intramolecular charge transfer absorption band in the near-infrared region from 550 to 900 nm. The molecular design and synthesis reported here broaden the types and fields of D-A molecular systems for potential applications in organic optoelectronic devices.
Collapse
Affiliation(s)
- Zhaoling Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jun Wan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Hui Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Man Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
5
|
Philippe C, Bui AT, Batsongo-Boulingui S, Pokladek Z, Matczyszyn K, Mongin O, Lemiègre L, Paul F, Hamlin TA, Trolez Y. 1,1,4,4-Tetracyanobutadiene-Functionalized Anthracenes: Regioselectivity of Cycloadditions in the Synthesis of Small Near-IR Dyes. Org Lett 2021; 23:2007-2012. [PMID: 33635667 PMCID: PMC8155560 DOI: 10.1021/acs.orglett.1c00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two small 1,1,4,4-tetracyanobutadiene-functionalized chromophores were obtained by careful leverage of the regioselectivity of the cycloaddition reaction of tetracyanoethylene with anthracene-ynamide derivatives, inducing either a [2 + 2] or a [4 + 2] Diels-Alder process. DFT calculations unraveled the mechanism of the [2 + 2] cycloaddition-retroelectrocyclization reaction sequence with ynamides and elucidated the differing mechanisms in the two substrates. The synthesized dyes presented panchromatic absorption extending into the near-IR and far-red/near-IR photoluminescence in the solid state up to 1550 nm.
Collapse
Affiliation(s)
- Clotilde Philippe
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Anh Thy Bui
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | | | - Ziemowit Pokladek
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Olivier Mongin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Loïc Lemiègre
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Frédéric Paul
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Yann Trolez
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| |
Collapse
|
6
|
Rout Y, Chauhan V, Misra R. Synthesis and Characterization of Isoindigo-Based Push-Pull Chromophores. J Org Chem 2020; 85:4611-4618. [PMID: 32126766 DOI: 10.1021/acs.joc.9b03267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Symmetrical and unsymmetrical chromophores of isoindigo 3-7 were designed and synthesized, in which isoindigo was used as the central unit (electron acceptor unit A), triphenylamine as the end capping unit (electron donor group D), 1,1,4,4-tetracyanobutadiene (TCBD, A') and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD (A″) as the acceptor unit. The effects of multiacceptor units on photophysical, electrochemical, and computational studies were investigated. The photophysical properties of isoindigo 6 and 7 exhibit a strong intramolecular charge transfer (ICT) absorption band in the near IR region. The isoindigo 4-7 shows multi-redox waves with a low electrochemical band gap, which signifies the tuning of highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels and enhance the π-conjugation. The computational studies demonstrate that there is a good agreement with experimental data. The molecular design and synthesis of isoindigo 4-7 gives a new avenue for the development of building blocks in organic electronics.
Collapse
Affiliation(s)
- Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Vivek Chauhan
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| |
Collapse
|