1
|
Crapnell R, Adarakatti PS, Banks CE. Electroanalytical Overview: The Sensing of Mesalamine (5-Aminosalicylic Acid). ACS MEASUREMENT SCIENCE AU 2024; 4:42-53. [PMID: 38404492 PMCID: PMC10885326 DOI: 10.1021/acsmeasuresciau.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 02/27/2024]
Abstract
Mesalamine, known as 5-aminosalicylic acid, is a medication used primarily in the treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. 5-Aminosalicylic acid can be measured using various benchtop laboratory techniques which involve liquid chromatography-mass spectroscopy, but these are sophisticated and large, meaning that they cannot be used on-site because transportation of the samples, chemicals, and physical and biological reactions can potentially occur, which can affect the sample's composition and potentially result in inaccurate results. An alternative approach is the use of electrochemical based sensing platforms which has the advantages of portability, cost-efficiency, facile miniaturization, and rapid analysis while nonetheless providing sensitivity and selectivity. We provide an overview of the use of the electroanalytical techniques for the sensing of 5-aminosalicylic acid and compare them to other laboratory-based measurements. The applications, challenges faced, and future opportunities for electroanalytical based sensing platforms are presented in this review.
Collapse
Affiliation(s)
- Robert
D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester
Street, Manchester M1 5GD, United Kingdom
| | - Prashanth S. Adarakatti
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester
Street, Manchester M1 5GD, United Kingdom
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester
Street, Manchester M1 5GD, United Kingdom
| |
Collapse
|
2
|
Jatiya M, Yadav V, Kumar U, Singh AK, Shalu. Structural, microstructure, dielectric relaxation, and AC conduction studies of perovskite SrSnO 3 and Ruddlesden-Popper oxide Sr 2SnO 4. Phys Chem Chem Phys 2024; 26:5387-5398. [PMID: 38270198 DOI: 10.1039/d3cp05781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Here, we report a comparison study on the synthesis and characterization of perovskite SrSnO3 (SSO) and Sr2SnO4 (S2SO). Rietveld refinement studies were performed on both prepared samples and suggest that they crystallized in cubic (SSO) and tetragonal (S2SO) structures. Fourier-transform infrared (FTIR) and Raman spectroscopy studies supported the XRD observations. Improved dielectric parameters were observed for S2SO over SSO due to differences in dislocation density, larger crystallite size, and denser microstructure. The electrical conduction and relaxation processes followed the Arrhenius type in both samples through the migration of oxygen vacancies via the Sn-site and the transfer of electrons between the Sn sites in two different temperature regions. These processes in the samples occurred via correlated barrier hopping (CBH) in SSO and the non-overlapping of small-polaron tunnelling (NSPT) in S2SO. The conduction and relaxation processes had similar sources of charge carriers but differed in the concentration and mobility of charge carriers. The presented materials can be utilized for dielectric capacitors, sensors, and mixed ionic and electronic conductor-based electrodes in IT-SOFC applications.
Collapse
Affiliation(s)
- Manisha Jatiya
- Advanced Functional Materials Laboratory, Department of Applied Science, IIIT Allahabad, Prayagraj, Uttar Pradesh 211015, India.
| | - Vedika Yadav
- Advanced Functional Materials Laboratory, Department of Applied Science, IIIT Allahabad, Prayagraj, Uttar Pradesh 211015, India.
| | - Upendra Kumar
- Advanced Functional Materials Laboratory, Department of Applied Science, IIIT Allahabad, Prayagraj, Uttar Pradesh 211015, India.
| | - Abhishek Kumar Singh
- Electrical and Electronics Department, Rajiv Gandhi Institute of Petroleum Technology, Amethi 229305, India
| | - Shalu
- Department of Physics, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida-201306, Uttar Pradesh, India
| |
Collapse
|
3
|
Kumar JV, Saravanan V, Lee D, Muthukutty B. Sense and Shoot: Unveiling the Electro-/Photocatalytic Potential of 2D White Graphene-Supported Perovskite Strontium Cobaltite from Detection to Remediation of Oxidative Stress Herbicide (Mesotrione). Anal Chem 2023; 95:17776-17789. [PMID: 37997913 DOI: 10.1021/acs.analchem.3c03812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In this research, we employed a strategy akin to "Feeding Two Birds with One Stone" aiming for the dual objectives of highly selective electrochemical detection and photocatalytic degradation of the environmentally hazardous herbicide mesotrione (MTN). We achieved this by utilizing hexagonal boron nitride (BN)-supported strontium cobaltite perovskite nanocomposites (SrCoO3/BN). The fabrication of the innovative bifunctional SrCoO3/BN nanocomposites involved a straightforward process of precipitation, followed by an annealing treatment and ultrasonication. The successful formation of these nanocomposites was corroborated through the application of diverse spectroscopic tools. Notably, as-prepared SrCoO3/BN nanocomposites exhibited a remarkable sensing platform for MTN, characterized by a notably low detection limit (11 nm), considerable sensitivity (3.782 μA μM-1 cm-2), and outstanding selectivity, alongside remarkable stability. Concurrently, these SrCoO3/BN nanocomposites demonstrated exceptional visible-light-driven photocatalytic efficacy for MTN degradation (99%) and complete mineralization. Our investigation systematically delved into the influence of operational parameters, including catalyst loading and the involvement of reactive oxidative species, in both the electrocatalytic and photocatalytic reactions. Drawing from these comprehensive studies, we have proposed plausible mechanisms for detecting and degrading MTN. Our findings pave the way for catalyst development, offering a unified solution for detecting and eliminating toxic organic compounds from the environment.
Collapse
Affiliation(s)
- Jeyaraj Vinoth Kumar
- Nano Inspired Laboratory, School of Integrated Technology, Yonsei University, Incheon 21983, Republic of Korea
| | - Vadivel Saravanan
- Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnankoil 626 126, Tamilnadu, India
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, South Korea
| | | |
Collapse
|
4
|
Zulueta YA, Nguyen MT, Pham-Ho MP. Strontium stannate as an alternative anode for Na- and K-Ion batteries: A theoretical study. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 2022; 162:110505. [DOI: 10.1016/j.jpcs.2021.110505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
|
5
|
Point of need simultaneous biosensing of pharmaceutical micropollutants with binder free conjugation of manganese stannate micro-rods on reduced graphene oxide in real-time analysis. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Zulueta YA, Mut R, Kaya S, Dawson JA, Nguyen MT. Strontium Stannate as an Alternative Anode Material for Li-Ion Batteries. THE JOURNAL OF PHYSICAL CHEMISTRY C 2021; 125:14947-14956. [DOI: 10.1021/acs.jpcc.1c02652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Affiliation(s)
- Yohandys A. Zulueta
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba CP-90500, Cuba
| | - Rafael Mut
- Departamento de Física Aplicada, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba CP-90500, Cuba
| | - Savas Kaya
- Department of Pharmacy, Sivas Cumhuriyet University Health Services Vocational School, Sivas 58140, Turkey
| | - James A. Dawson
- Chemistry—School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
- Centre for Energy, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Minh Tho Nguyen
- Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
7
|
WS2 hierarchical nanoflowers on rGO with enhanced electrochemical performance for sensitive and selective detection of mesalazine in real sample analysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126452] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Liu K, Han J, Huang J, Wei Z, Yang Z, Pan S. SrTi(IO 3) 6·2H 2O and SrSn(IO 3) 6: distinct arrangements of lone pair electrons leading to large birefringences. RSC Adv 2021; 11:10309-10315. [PMID: 35423485 PMCID: PMC8695646 DOI: 10.1039/d0ra10726c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 12/04/2022] Open
Abstract
Three new iodates SrTi(IO3)6·2H2O, (H3O)2Ti(IO3)6, and SrSn(IO3)6 have been synthesized via a facile hydrothermal method. The three compounds have zero-dimensional crystal structures composed of one [MO6]8− (M = Ti, Sn) octahedron connected with six [IO3]− trigonal pyramids. However, the particular coordination of Sr2+ cations results in distinct arrangements of lone pair electrons in an [IO3]− trigonal pyramid, which leads to large birefringences. More importantly, this work enriches the species crystal chemistry for [M(IO3)6]2− (M = Ti, Sn) clusters-containing iodates. The distinct arrangements of [IO3]− trigonal pyramids lead to larger birefringences in SrTi(IO3)6·2H2O and SrSn(IO3)6 than that in (H3O)2Ti(IO3)6.![]()
Collapse
Affiliation(s)
- Kaitong Liu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian Han
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
| | - Junben Huang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
| | - Zhonglei Wei
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road Urumqi 830011 China
| |
Collapse
|
9
|
Simultaneous electrochemical determination of nitrofurantoin and nifedipine with assistance of needle-shaped perovskite structure: barium stannate fabricated glassy carbon electrode. Mikrochim Acta 2021; 188:19. [DOI: 10.1007/s00604-020-04645-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
|
10
|
Nataraj N, Krishnan SK, Chen TW, Chen SM, Lou BS. Ni-Doped ZrO2 nanoparticles decorated MW-CNT nanocomposite for the highly sensitive electrochemical detection of 5-amino salicylic acid. Analyst 2021; 146:664-673. [DOI: 10.1039/d0an01507e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ni-ZrO2/MWCNT/GCE for highly sensitive electrochemical detection of 5-ASA in biofluids.
Collapse
Affiliation(s)
- Nandini Nataraj
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
- Research and Development Center for Smart Textile Technology
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Bih-Show Lou
- Chemistry Division
- Center for General Education
- Chang Gung University
- Taoyuan 333
- Taiwan
| |
Collapse
|
11
|
Chantelle L, Menezes de Oliveira AL, Kennedy BJ, Maul J, da Silva MRS, Duarte TM, Albuquerque AR, Sambrano JR, Landers R, Siu-Li M, Longo E, dos Santos IMG. Probing the Site-Selective Doping in SrSnO3:Eu Oxides and Its Impact on the Crystal and Electronic Structures Using Synchrotron Radiation and DFT Simulations. Inorg Chem 2020; 59:7666-7680. [PMID: 32338503 DOI: 10.1021/acs.inorgchem.0c00664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laís Chantelle
- NPE-LACOM, Dept de Quı́mica, Universidade Federal da Paraı́ba, João Pessoa - Paraı́ba 58051−085, Brazil
| | - André L. Menezes de Oliveira
- NPE-LACOM, Dept de Quı́mica, Universidade Federal da Paraı́ba, João Pessoa - Paraı́ba 58051−085, Brazil
- School of Chemistry, The University of Sydney, Sydney - New South Wales 2006, Australia
| | - Brendan J. Kennedy
- School of Chemistry, The University of Sydney, Sydney - New South Wales 2006, Australia
| | - Jefferson Maul
- Dipartimento di Chimica, Universita di Torino, via Giuria 5, 10125, Torino, Italy
| | - Márcia R. S. da Silva
- NPE-LACOM, Dept de Quı́mica, Universidade Federal da Paraı́ba, João Pessoa - Paraı́ba 58051−085, Brazil
| | - Thiago M. Duarte
- NPE-LACOM, Dept de Quı́mica, Universidade Federal da Paraı́ba, João Pessoa - Paraı́ba 58051−085, Brazil
| | - Anderson R. Albuquerque
- Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal - Rio Grande do Norte 59078-970, Brazil
| | - Julio R. Sambrano
- Grupo de Simulação e Modelagem Molecular, Universidade Estadual Paulista, Bauru − São Paulo 17033-360, Brazil
| | - Richard Landers
- Instituto de Fı́sica Gleb Wataghin, Universidade Estadual de Campinas, Campinas − São Paulo 13083-859, Brazil
| | - Máximo Siu-Li
- Instituto de Física, Universidade de São Paulo, São Carlos - São Paulo 13563-120, Brazil
| | - Elson Longo
- LIEC/INCTMN, Universidade Estadual Paulista, Araraquara - São Paulo 14800-060, Brazil
| | - Iêda M. G. dos Santos
- NPE-LACOM, Dept de Quı́mica, Universidade Federal da Paraı́ba, João Pessoa - Paraı́ba 58051−085, Brazil
| |
Collapse
|
12
|
George K J, Halali VV, C. G. S, Suvina V, Sakar M, Balakrishna RG. Perovskite nanomaterials as optical and electrochemical sensors. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00306a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The perovskite family is comprised of a great number of members because of the possible and flexible substitution of numerous ions in its system.
Collapse
Affiliation(s)
- Jesna George K
- Centre for Nano and Material Sciences
- Jain University
- Bangalore 562112
- India
| | - Vishaka V Halali
- Centre for Nano and Material Sciences
- Jain University
- Bangalore 562112
- India
| | - Sanjayan C. G.
- Centre for Nano and Material Sciences
- Jain University
- Bangalore 562112
- India
| | - V. Suvina
- Centre for Nano and Material Sciences
- Jain University
- Bangalore 562112
- India
| | - M. Sakar
- Centre for Nano and Material Sciences
- Jain University
- Bangalore 562112
- India
| | | |
Collapse
|
13
|
Muthukutty B, Krishnapandi A, Chen SM. The facile co-precipitation synthesis of strontium tungstate anchored on a boron nitride (SrWO4/BN) composite as a promising electrocatalyst for pharmaceutical drug analysis. NEW J CHEM 2020. [DOI: 10.1039/c9nj05673d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Strontium tungstate/boron nitride (SrWO4/BN) composite considered efficient electrocatalysts in the area of electrochemical sensors.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Alagumalai Krishnapandi
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|