1
|
Kang E, Lee W, Lee H. Comprehensive Understanding of Self-Propelled Janus Pt/Fe 2O 3 Micromotor Dynamics: Impact of Size, Morphology, and Surface Structure. J Phys Chem Lett 2023; 14:9811-9818. [PMID: 37889127 DOI: 10.1021/acs.jpclett.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The increasing use of plastics has led to the accumulation of plastic waste in the oceans, resulting in significant global environmental challenges associated with microplastic pollution. Micromotors, capable of capturing and removing microplastics from aquatic systems, have emerged as a promising solution to addressing this problem. This research aims to analyze the factors affecting the speed of micromotors, including size, morphology, and surface structure, while elucidating the underlying mechanisms governing micromotor propulsion to develop efficient and ecofriendly micromotors. In this study, we systematically manipulate various parameters by modifying the synthesis method of hematite-based micromotors, subsequently comparing their propulsion speeds and uncovering the precise role of these parameters in determining the micromotor performance. Furthermore, we shed light on the intricate interplay between drag force and propulsive force, demonstrating how these forces vary under different H2O2 conditions. These findings provide valuable insights into the design of efficient micromotors tailored for dynamic aquatic environments.
Collapse
Affiliation(s)
- Eunbi Kang
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Wanhee Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hyosun Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
2
|
Smart micro- and nanorobots for water purification. NATURE REVIEWS BIOENGINEERING 2023; 1:236-251. [PMID: 37064655 PMCID: PMC9901418 DOI: 10.1038/s44222-023-00025-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Less than 1% of Earth's freshwater reserves is accessible. Industrialization, population growth and climate change are further exacerbating clean water shortage. Current water-remediation treatments fail to remove most pollutants completely or release toxic by-products into the environment. The use of self-propelled programmable micro- and nanoscale synthetic robots is a promising alternative way to improve water monitoring and remediation by overcoming diffusion-limited reactions and promoting interactions with target pollutants, including nano- and microplastics, persistent organic pollutants, heavy metals, oils and pathogenic microorganisms. This Review introduces the evolution of passive micro- and nanomaterials through active micro- and nanomotors and into advanced intelligent micro- and nanorobots in terms of motion ability, multifunctionality, adaptive response, swarming and mutual communication. After describing removal and degradation strategies, we present the most relevant improvements in water treatment, highlighting the design aspects necessary to improve remediation efficiency for specific contaminants. Finally, open challenges and future directions are discussed for the real-world application of smart micro- and nanorobots.
Collapse
|
3
|
Urso M, Pumera M. Micro‐ and Nanorobots Meet DNA. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202200711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 09/02/2023]
Abstract
AbstractDNA, the well‐known molecule that carries the genetic information of almost all forms of life, represents a pivotal element in formulating intelligent and versatile micro/nanorobotic systems. DNA‐functionalized micro/nanorobots have opened new and exciting opportunities in many research areas due to the synergistic combination of self‐propulsion at the micro/nanoscale and the high specificity and programmability of DNA interactions. Here, their designs and applications are critically reviewed, which span from the use of DNA as the fuel to chemotactically power nanorobots toward cancer cells to DNA as the main building block for sophisticated phototactic biorobots, DNA nanodevices to self‐monitor microrobots’ activity status, DNA and RNA sensing, nucleic acids isolation, gene therapy, and water purification. The perspective on future directions of the field is also shared, envisioning DNA‐mediated reconfigurable assemblies of nanorobotic swarms.
Collapse
Affiliation(s)
- Mario Urso
- Future Energy and Innovation Lab Central European Institute of Technology Brno University of Technology Purkyňova 656/123 612 00 Brno Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Lab Central European Institute of Technology Brno University of Technology Purkyňova 656/123 612 00 Brno Czech Republic
| |
Collapse
|
4
|
Peng X, Urso M, Ussia M, Pumera M. Shape-Controlled Self-Assembly of Light-Powered Microrobots into Ordered Microchains for Cells Transport and Water Remediation. ACS NANO 2022; 16:7615-7625. [PMID: 35451832 DOI: 10.1021/acsnano.1c11136] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nature presents the collective behavior of living organisms aiming to accomplish complex tasks, inspiring the development of cooperative micro/nanorobots. Herein, the spontaneous assembly of hematite-based microrobots with different shapes is presented. Autonomous motile light-driven hematite/Pt microrobots with cubic and walnut-like shapes are prepared by hydrothermal synthesis, followed by the deposition of a Pt layer to design Janus structures. Both microrobots show a fuel-free motion ability under light irradiation. Because of the asymmetric orientation of the magnetic dipole moment in the crystal, cubic hematite/Pt microrobots can self-assemble into ordered microchains, contrary to the random aggregation observed for walnut-like microrobots. The microchains exhibit different synchronized motions under light irradiation depending on the mutual orientation of the individual microrobots during the assembly, which allows them to accomplish multiple tasks, including capturing, picking up, and transporting microscale objects, such as yeast cells and suspended matter in water extracted from personal care products, as well as degrading polymeric materials. Such light-powered self-assembled microchains demonstrate an innovative cooperative behavior for small-scale multitasking artificial robotic systems, holding great potential toward cargo capture, transport, and delivery, and wastewater remediation.
Collapse
Affiliation(s)
- Xia Peng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Mario Urso
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Martina Ussia
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200 Brno, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan 40402, ROC
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Korea
| |
Collapse
|
5
|
María-Hormigos R, Molinero-Fernández Á, López MÁ, Jurado-Sánchez B, Escarpa A. Prussian Blue/Chitosan Micromotors with Intrinsic Enzyme-like Activity for (bio)-Sensing Assays. Anal Chem 2022; 94:5575-5582. [PMID: 35362949 PMCID: PMC9008696 DOI: 10.1021/acs.analchem.1c05173] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prussian Blue (PB)/chitosan enzyme mimetic tubular micromotors are used here for on-the-fly (bio)-sensing assays. The micromotors are easily prepared by direct deposition of chitosan into the pores of a membrane template and in situ PB synthesis during hydrogel deposition. Under judicious pH control, PB micromotors display enzyme mimetic capabilities with three key functions on board: the autonomous oxygen bubble propulsion (with PB acting as a catalase mimic for hydrogen peroxide decomposition), 3,3',5,5'-tetramethylbenzidine (TMB) oxidation (with PB acting as a peroxidase mimic for analyte detection), and as a magnetic material (to simplify the (bio)-sensing steps). In connection with chitosan capabilities, these unique enzyme mimetic micromotors are further functionalized with acetylthiocholinesterase enzyme (ATChE) to be explored in fast inhibition assays (20 min) for the colorimetric determination of the nerve agent neostigmine, with excellent analytical performance in terms of quantification limit (0.30 μM) and concentration linear range (up to 500 μM), without compromising efficient micromotor propulsion. The new concept illustrated holds considerable potential for a myriad of (bio)-sensing applications, including forensics, where this conceptual approach remains to be explored. Micromotor-based tests to be used in crime scenes are also envisioned due to the reliable neostigmine determination in unpretreated samples.
Collapse
Affiliation(s)
- Roberto María-Hormigos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Águeda Molinero-Fernández
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.,Chemical Research Institute ″Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.,Chemical Research Institute ″Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.,Chemical Research Institute ″Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| |
Collapse
|
6
|
Peng X, Urso M, Pumera M. Photo-Fenton Degradation of Nitroaromatic Explosives by Light-Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. SMALL METHODS 2021; 5:e2100617. [PMID: 34927942 DOI: 10.1002/smtd.202100617] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Indexed: 06/14/2023]
Abstract
Self-powered micromachines are considered a ground-breaking technology for environmental remediation. Light-powered Janus microrobots based on photocatalytic semiconductors asymmetrically covered with metals have recently received great interest as they can exploit light to move and contemporarily degrade pollutants in water. Although various metals have been explored and compared to design Janus microrobots, the influence of the metal layer thickness on motion behavior and photocatalytic properties of microrobots have not been investigated yet. Here, light-driven hematite/Pt Janus microrobots are reported and fabricated by depositing Pt layers with different thickness on hematite microspheres produced by hydrothermal synthesis. It has been demonstrated that the thicker the metal layer the higher the microrobots speed. However, when employed for the degradation of nitroaromatic explosives pollutants through the photo-Fenton mechanism, higher rate of H2 O2 consumption leads to higher propulsion speed of microrobots and lower pollutants degradation efficiencies owing to less H2 O2 involved in the photo-Fenton reaction. This work presents new insights into the motion behavior of light-powered Janus micromotors and demonstrates that high speed is not what really matters for water purification via photo-Fenton reaction, which is important for the future environmental applications of micromachines.
Collapse
Affiliation(s)
- Xia Peng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Mario Urso
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
- Center for Nanorobotics and Machine Intelligence, Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 61300, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
7
|
Kutorglo EM, Elashnikov R, Rimpelova S, Ulbrich P, Říhová Ambrožová J, Svorcik V, Lyutakov O. Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16173-16181. [PMID: 33787203 DOI: 10.1021/acsami.0c20055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Novel photoactive and enzymatically active nanomotors were developed for efficient organic pollutant degradation. The developed preparation route is simple and scalable. Light-absorbing polypyrrole nanoparticles were equipped with a bi-enzyme [glucose oxidase/catalase (GOx/Cat)] system enabling the simultaneous utilization of light and glucose as energy sources for jet-induced nanoparticle movement and active radical production. The GOx utilizes glucose to produce hydrogen peroxide, which is subsequently degraded by Cat, resulting in the generation of active radicals and/or oxygen bubbles that propel the particles. Uneven grafting of GOx/Cat molecules on the nanoparticle surface ensures inhomogeneity of peroxide creation/degradation, providing the nanomotor random propelling. The nanomotors were tested for their ability to degrade chlorophenol, under various experimental conditions, that is, with and without simulated sunlight illumination or glucose addition. In all cases, degradation was accelerated by the presence of the self-propelled nanoparticles or light illumination. Light-induced heating also positively affects enzymatic activity, further accelerating nanomotor diffusion and pollutant degradation. In fact, the chemical and photoactivities of the nanoparticles led to more than 95% removal of chlorophenol in 1 h, without any external stirring. Finally, the quality of the purified water and the extent of pollutant removal were checked using an eco-toxicological assay, with demonstrated significant synergy between glucose pumping and sunlight illumination.
Collapse
Affiliation(s)
- Edith Mawunya Kutorglo
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Silvie Rimpelova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Jana Říhová Ambrožová
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic
| |
Collapse
|
8
|
Tao Q, Bi J, Huang X, Wei R, Wang T, Zhou Y, Hao H. Fabrication, application, optimization and working mechanism of Fe 2O 3 and its composites for contaminants elimination from wastewater. CHEMOSPHERE 2021; 263:127889. [PMID: 32828053 DOI: 10.1016/j.chemosphere.2020.127889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Fe2O3 and its composites have been extensively investigated and employed for the remediation of contaminated water with the characteristics of low cost, outstanding chemical stability, high efficiency of visible light utilization, excellent magnetic ability and abundant active sites for adsorption and degradation. In this review, the potentials of Fe2O3 in water remediation were discussed and summarized in detail. Firstly, various synthesis methods of Fe2O3 and its composites were reviewed and compared. Based on the structures and characteristics of the obtained materials, their applications and related mechanisms in pollutants removal were surveyed and discussed. Furthermore, several strategies for optimizing the remediation processes, including dispersion, immobilization, nano/micromotor construction and simultaneous decontamination, were also highlighted and discussed. Finally, recommendations for further work in the development of novel Fe2O3-related materials and its practical applications were proposed.
Collapse
Affiliation(s)
- Qingqing Tao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jingtao Bi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Rongli Wei
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yanan Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, China.
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Co-Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|
9
|
Qiu Y, Tan G, Fang Y, Liu S, Zhou Y, Kumar A, Trivedi M, Liu D, Liu J. Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. NEW J CHEM 2021. [DOI: 10.1039/d1nj04045f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present review, the types and activities of nanometer-sized enzymes are summarized, with recent progress of nanometer-sized enzymes in the field of biomedical detection.
Collapse
Affiliation(s)
- Yuzhi Qiu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Guijian Tan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yuqian Fang
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Si Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yubin Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, NewDelhi-110021, India
| | - Dong Liu
- Shenzhen Huachuang Bio-pharmaceutical Technology Co. Ltd., Shenzhen, 518112, Guangdong, China
| | - Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
10
|
Chattopadhyay P, Sharan P, Berndt A, Simmchen J. Carbonate Micromotors for Treatment of Construction Effluents. NANOMATERIALS 2020; 10:nano10071408. [PMID: 32707703 PMCID: PMC7407598 DOI: 10.3390/nano10071408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022]
Abstract
Concrete in construction has recently gained media coverage for its negative CO2 footprint, but this is not the only problem associated with its use. Due to its chemical composition, freshly poured concrete changes the pH of water coming in contact with the surface to very alkaline values, requiring neutralization treatment before disposal. Conventional methods include the use of mineral acid or CO2 pumps, causing high costs to building companies. In this paper, we present a micromotor based remediation strategy, which consists of carbonate particles half-coated with citric acid. To achieve this half coverage spray coating is used for the first time to design Janus structures. The motors propel diffusiophoretically due to a self-generated gradient formed as the acid coverage dissolves. The locally lower pH contributes to the dissolution of the carbonate body. These motors have been employed to study neutralization of diluted concrete wash water (CWW) at microscopic scale and we achieve visualization of the pH changes occurring in the vicinity of motors using anthocyanine as pH indicator dye. The effect of citric acid-carbonates hybrid on neutralization of real CWW on macroscopic scale has also been studied. In addition, all employed chemicals are cheap, non-toxic and do not leave any solid residues behind.
Collapse
Affiliation(s)
| | - Priyanka Sharan
- Chair of Physical Chemistry, TU Dresden, 01062 Dresden, Germany; (P.C.); (P.S.)
| | - Andrej Berndt
- Implenia Schweiz AG, CH-8304 Wallisellen, Switzerland;
| | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062 Dresden, Germany; (P.C.); (P.S.)
- Correspondence:
| |
Collapse
|