1
|
Bombaci M, Lo Presti F, Pellegrino AL, Lippi M, Rossi P, Tacconi L, Sorace L, Malandrino G. Bifunctional heterobimetallic 3d-4f [Co(II)-RE, RE = Dy, Eu, and Y] ionic complexes: modulation of the magnetic-luminescence behaviour. Dalton Trans 2024. [PMID: 39535900 DOI: 10.1039/d4dt01693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work reports the engineering and functional properties of an emerging class of heterobimetallic 3d-4f ionic complexes designed with cobalt and rare-earth (RE) metals. We present a comprehensive examination of the structural, magnetic, optical, and thermal properties of the heterobimetallic ionic complexes with the general formula [Co(hfa)3]-[RE(hfa)2tetraglyme]+ (RE = Dy, Eu, and Y), where the metal centres are coordinated by hexafluoroacetylacetonate (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), β-diketone and tetraglyme (2,5,8,11,14-pentaoxapentadecane) polyether. Structural analysis reveals an octahedral coordination geometry enveloping the cobalt(II) centre, characterized by inherent symmetry properties consistent across the derivatives, while a capped square-antiprism coordination polyhedron is observed for the RE ions. Electron paramagnetic resonance (EPR) spectroscopy confirms the constancy of the electronic structure of the cobalt(II) moiety and the significant contribution of the lanthanide ions to the magnetic properties of the compounds. The non-trivial single-ion magnetic properties of cobalt(II), dysprosium(III), and europium(III) centres, and the effect of their interactions are investigated by a detailed static and dynamic magnetic susceptibility study. Moreover, optical analyses have been carried out showing the π-π* intraligand (IL) transition of the β-diketonate ligand and the d-d cobalt(II) transitions. Luminescence characterization of dysprosium(III) and europium(III) derivatives exhibits their characteristic emission bands, indicative of the unique photophysical properties conferred by the lanthanide ions. Thermal studies using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) reveal good thermal stability and volatility properties, underscoring the interesting nature of these ionic complexes for potential deposition on suitable substrates. In summary, these heterobimetallic complexes show intriguing optical and magnetic properties with potential implications across diverse scientific disciplines, including molecular magnetism, optoelectronics, and materials science.
Collapse
Affiliation(s)
- Matteo Bombaci
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Francesca Lo Presti
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Anna L Pellegrino
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Martina Lippi
- Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
| | - Patrizia Rossi
- Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
| | - Leonardo Tacconi
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, and INSTM UdR Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Lorenzo Sorace
- Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, and INSTM UdR Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Graziella Malandrino
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
2
|
Figueiredo NM, Voroshylova IV, Ferreira ESC, Marques JMC, Cordeiro MNS. Magnetic Ionic Liquids: Current Achievements and Future Perspectives with a Focus on Computational Approaches. Chem Rev 2024; 124:3392-3415. [PMID: 38466339 PMCID: PMC10979404 DOI: 10.1021/acs.chemrev.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.
Collapse
Affiliation(s)
- Nádia M. Figueiredo
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Iuliia V. Voroshylova
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Elisabete S. C. Ferreira
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Jorge M. C. Marques
- CQC−IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M. Natália
D. S. Cordeiro
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Abbasi N, De Silva S, Biswas A, Anderson JL. Ultra-Low Viscosity and High Magnetic Susceptibility Magnetic Ionic Liquids Featuring Functionalized Diglycolic Acid Ester Rare-Earth and Transition Metal Chelates. ACS OMEGA 2023; 8:27751-27760. [PMID: 37546640 PMCID: PMC10399152 DOI: 10.1021/acsomega.3c03938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023]
Abstract
Magnetic ionic liquids (MILs) comprise a subcategory of ionic liquids (ILs) and contain a paramagnetic metal center allowing them to be readily manipulated by an external magnetic field. While MILs are popularly employed as solvents in catalysis, separations, and organic synthesis, most low viscosity combinations possess a hydrophilic character that limits their use in aqueous matrices. To date, no study has reported the synthesis and characterization of hydrophobic MILs with viscosities similar to those of hydrophilic MILs and organic solvents while simultaneously exhibiting enhanced magnetic and thermal properties. In this study, diglycolic acid esters are employed as ligands to chelate with paramagnetic metals to produce cations that are paired with metal chelates composed of hexafluoroacetylacetonate ligands to form MILs incorporating multiple metal centers in the cation and anion. Viscosity values below 31.6 cP were obtained for these solvents, the lowest ever reported for hydrophobic MILs. Solubilities in nonpolar solvents such as benzene were observed to be as high as 50% (w/v) MIL-to-solvent ratio while being insoluble in water at concentrations as low as 0.01% (w/v). Effective paramagnetic moment values for these solvents ranged from 5.33 to 15.56 Bohr magnetons (μB), with mixed metal MILs containing multiple lanthanides in the anion generally offering higher magnetic susceptibilities. MILs composed of ligands containing octyl substituents were found to possess thermal stabilities up to 190 °C. The synthetic strategies explored in this study exploit the highly tunable nature of the employed cation and anion pairs to design versatile ultra-low viscosity magnetoactive solvents that possess tremendous potential and applicability in liquid-liquid separation systems, catalysis, and microfluidics where the mechanical movement of the solvent can be easily facilitated using electromagnets.
Collapse
Affiliation(s)
| | - Shashini De Silva
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Anis Biswas
- Ames
National Laboratory—USDOE, Ames, Iowa 50011, United States
| | - Jared L. Anderson
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Cheng Y, Li F, Wu Q, Peng K, Fan B, Bai Y, Wang Z, Zhang N, Zhang X. Efficient ethylene/ethane separation by rare earth metal-containing ionic liquids in N, N-dimethylformamide. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Qamar Farooq M, Tryon-Tasson N, Biswas A, Anderson JL. Preparation of ternary hydrophobic magnetic deep eutectic solvents and an investigation into their physicochemical properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Mujtaba Abbasi N, Zeger VR, Biswas A, Anderson JL. Synthesis and characterization of magnetic ionic liquids containing multiple paramagnetic lanthanide and transition metal centers and functionalized diglycolamide ligands. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Song S, Zhang S, Yao J, Li H. The interactions of chelate-based ionic liquids: from the perspective of vaporization enthalpy. Phys Chem Chem Phys 2022; 24:4317-4323. [PMID: 35107465 DOI: 10.1039/d1cp05307h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vaporization enthalpies of [CnTPP][Cu(F6-acac)3] (n = 14, 16) and [Cnmim][Cu(F6-acac)3] (n = 8, 10), a new type of chelate-based ionic liquids (ChILs), were measured by thermogravimetric analysis (ΔglHom(Tav) = 73.2-83.7 kJ mol-1), which decreased compared to their non-chelate counterparts (difference up to 34.1 kJ mol-1). This can be explained by the fact that the increase in the polar region size by chelate ions mainly leads to the decrease in Coulomb forces based on the micro-biphasic separation in ionic liquids. Vaporization enthalpies at experimental temperatures were adjusted to a reference temperature by the Verevkin's method, and compared with the data calculated by the Kabo's method, which illustrated clear differences on ChILs. In addition, some physicochemical properties of [CnTPP][Cu(F6-acac)3] (n = 14, 16) were measured including density, viscosity, conductivity, and surface tension.
Collapse
Affiliation(s)
- Sijie Song
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Songna Zhang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Jia Yao
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Haoran Li
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou, 310027, P. R. China. .,State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
8
|
Alves MS, Neto LCF, Scheid C, Merib J. An overview of magnetic ionic liquids: From synthetic strategies to applications in microextraction techniques. J Sep Sci 2021; 45:258-281. [PMID: 34726337 DOI: 10.1002/jssc.202100599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022]
Abstract
Remarkable progress has been achieved in the application of magnetic ionic liquids in microextraction-based procedures. These materials exhibit unique physicochemical properties of ionic liquids featuring additional responses to magnetic fields by incorporating a paramagnetic component within the chemical structure. This intriguing property can open new horizons in analytical extractions because the solvent manipulation is facilitated. Moreover, the tunable chemical structures of magnetic ionic liquids also allow for task-specific extractions that can significantly increase the method selectivity. This review aimed at providing an up-to-date overview of articles involving synthesis, physicochemical properties, and applications of magnetic ionic liquids highlighting recent developments and configurations. Moreover, a section containing critical evaluation and future trends in magnetic ionic liquid-based extractions is included.
Collapse
Affiliation(s)
- Mônica Silva Alves
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Luiz Carlos Ferreira Neto
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Camila Scheid
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
9
|
Zhang S, Wang Y, Yao J, Li H. Special Mixing Behavior of Chelate-based Ionic Liquid with Methanol. Chemphyschem 2021; 22:2050-2057. [PMID: 34327806 DOI: 10.1002/cphc.202100422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Indexed: 11/10/2022]
Abstract
Compared to the general ionic liquids (ILs), a significant deviation of the binary mixtures of 1-decyl-3-methylimidazolium tri(hexafluoroacetylaceto)-copper(II) ([C10 mim][Cu(hfacac)3 ]) with methanol was found, indicating the way methanol interacts with ILs might be governed by the special structure of the chelating anion. IR results showed that the v (C2-H) of 1-decyl-3-methylimidazolium hexafluoroacetylacetonate ([C10 mim][hfacac]) blue-shifted more significantly than that of [C10 mim][Cu(hfacac)3 ], meanwhile the v (C=O) red-shifted in [C10 mim][Cu(hfacac)3 ], which is contrast with that in [C10 mim][hfacac]. Two-dimensional correlation analysis of the FTIR spectra indicated that the chelating cavity has little effect on the sequence of the ILs sites that interact with methanol. Combined with small angle X-ray scattering (SAXS) results, the picture of mixing processes in these two systems were proposed. Methanol interacts directly with the anion followed by the cation in [C10 mim][hfacac], while methanol preferentially enters the chelating cavity and enhances the packing effect in the [C10 mim][Cu(hfacac)3 ] system.
Collapse
Affiliation(s)
- Songna Zhang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou, 310027, China
| | - Yongtao Wang
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou, 310027, China
| | - Jia Yao
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou, 310027, China
| | - Haoran Li
- Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou, 310027, China.,State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Herce-Sesa B, López-López JA, Moreno C. Advances in ionic liquids and deep eutectic solvents-based liquid phase microextraction of metals for sample preparation in Environmental Analytical Chemistry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116398] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Kim E, Kononevich Y, Anisimov A, Buzin M, Vasil'ev V, Korlyukov A, Ionov D, Khanin D, Shtykova E, Volkov V, Muzafarov A. Cross-linked polymer networks based on polysiloxane and nickel β-diketonate precursors. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Simultaneous cell lysis and DNA extraction from whole blood using magnetic ionic liquids. Anal Bioanal Chem 2020; 412:8039-8049. [PMID: 32918171 DOI: 10.1007/s00216-020-02941-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Conventional DNA sample preparation methods involve tedious sample handling steps that require numerous inhibitors of the polymerase chain reaction (PCR) and instrumentation to implement. These disadvantages limit the applicability of conventional cell lysis and DNA extraction methods in high-throughput applications, particularly in forensics and clinical laboratories. To overcome these drawbacks, a series of nine hydrophobic magnetic ionic liquids (MILs) previously shown to preconcentrate DNA were explored as cell lysis reagents. The MILs were found to lyse white blood cells from whole blood, 2-fold diluted blood, and dry blood samples while simultaneously extracting human genomic DNA. The identity of metal ion incorporated within the MIL appears to cause hemolysis while the cationic component further reduces the cell's integrity. Over 500 pg of human genomic DNA was isolated from 50 μL of whole blood using the trioctylbenzylammonium tris(hexafluoroacetylaceto)nickelate(II) ([N8,8,8,Bz+][Ni(hfacac)3-]) MIL, and 800 pg DNA was isolated from a dry blood samples using the trihexyl(tetradecyl)phosphonium tris(phenyltrifluoroacetylaceto)nickelate(II) ([P6,6,6,14+][Ni(Phfacac)3-]) MIL following a 1-min vortex step. A rapid, one-step cell lysis and DNA extraction from blood is ideal for settings that seek high-throughput analysis while minimizing the potential for contamination.Graphical abstract.
Collapse
|
13
|
Zhu C, Varona M, Anderson JL. Magnetic Ionic Liquids as Solvents for RNA Extraction and Preservation. ACS OMEGA 2020; 5:11151-11159. [PMID: 32455238 PMCID: PMC7241037 DOI: 10.1021/acsomega.0c01098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/23/2020] [Indexed: 05/24/2023]
Abstract
Ribonucleic acid (RNA) is particularly sensitive to enzymatic degradation by endonucleases prior to sample analysis. In-field preservation has been a challenge for RNA sample preparation. Very recently, hydrophobic magnetic ionic liquids (MIL) have shown significant promise in the area of RNA extraction. In this study, MILs were synthesized and employed as solvents for the extraction and preservation of RNA in aqueous solution. RNA samples obtained from yeast cells were extracted and preserved by the trihexyl(tetradecyl) phosphonium tris(hexafluoroacetylaceto)cobaltate(II) ([P66614 +][Co(hfacac)3 -]) and trihexyl(tetradecyl) phosphonium tris(phenyltrifluoroacetylaceto)cobaltate(II) ([P66614 +][Co(Phtfacac)3 -]) MIL with a dispersion of the supporting media, polypropylene glycol, at room temperature for up to a 7 and 15 day period, respectively. High-quality RNA treated with ribonuclease A (RNase A) was recovered from the tetra(1-octylimidazole)cobaltate(II) di(l-glutamate) ([Co(OIM)4 2+][Glu-]2) and tetra(1-octylimidazole)cobaltate(II) di(l-aspartate) ([Co(OIM)4 2+][Asp-]2) MILs after a 24 h period at room temperature. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and agarose gel electrophoresis were used to determine the effect of RNA preservation. Furthermore, the preservation mechanism was investigated by exploring the partitioning of RNase A into the MIL using high-performance liquid chromatography.
Collapse
|
14
|
Emaus MN, Anderson JL. Allelic discrimination between circulating tumor DNA fragments enabled by a multiplex-qPCR assay containing DNA-enriched magnetic ionic liquids. Anal Chim Acta 2020; 1124:184-193. [PMID: 32534671 DOI: 10.1016/j.aca.2020.04.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Multiplex amplification of DNA can be highly valuable in circulating tumor DNA (ctDNA) analysis due to the sheer number of potential mutations. However, commercial ctDNA extraction methods struggle to preconcentrate low concentrations of DNA and require multiple sample handling steps. Recently, magnetic ionic liquids (MILs) have been used to extract DNA and were integrated with a quantitative polymerase chain reaction (qPCR). However, in previous studies, DNA could not be preconcentrated from plasma and only one fragment could be amplified per reaction. In this study, MILs were utilized as DNA extraction solvents and directly integrated into a multiplex-qPCR buffer to simultaneously amplify wild-type KRAS, G12S KRAS, and wild-type BRAF, three clinically-relevant genes whose mutation status can affect the success of anti-EGFR therapy. DNA was desorbed from the MIL solvent during a multiplex-PCR without having a significant effect on the amplification efficiency, and allelic discrimination of single-nucleotide polymorphisms could still be achieved. Enrichment factors over 35 for all three sequences were achieved from Tris buffer using the [N8,8,8,Bz+][Ni(hfacac)3-]) and [P6,6,6,14+][Ni(Phtfacac)3-] MILs. DNA could still be preconcentrated from 2-fold diluted human plasma using the [N8,8,8,Bz+][Ni(hfacac)3-] MIL. Extractions from undiluted plasma were reproducible with the [P6,6,6,14+][Ni(Phtfacac)3-] MIL although DNA was not preconcentrated with enrichment factors around 0.6 for all three fragments. Compared to commercial DNA extraction methods (i.e., silica-based spin columns and magnetic beads), the MIL-based extraction achieved higher enrichment factors in Tris buffer and plasma. The ability of the MIL-based dispersive liquid-liquid microextraction (DLLME) direct-multiplex-qPCR method to simultaneously achieve high enrichment factors of multiple DNA fragments from human plasma is highly promising in the field of ctDNA detection.
Collapse
Affiliation(s)
- Miranda N Emaus
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
15
|
Selective hybridization and capture of KRAS DNA from plasma and blood using ion-tagged oligonucleotide probes coupled to magnetic ionic liquids. Anal Chim Acta 2019; 1094:1-10. [PMID: 31761034 DOI: 10.1016/j.aca.2019.10.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022]
Abstract
Detection of circulating tumor DNA (ctDNA) presents several challenges due to single-nucleotide polymorphisms and large amounts of background DNA. Previously, we reported a sequence-specific DNA extraction procedure utilizing functionalized oligonucleotides called ion-tagged oligonucleotides (ITOs) and disubstituted ion-tagged oligonucleotides (DTOs). ITOs and DTOs are capable of hybridizing to complementary DNA for subsequent capture by a magnetic ionic liquid (MIL) through hydrophobic interactions, π-π stacking, and fluorophilic interactions. However, the performance of the ITOs and DTOs in complex sample matrices has not yet been evaluated. In this study, we compare the amount of KRAS DNA extracted using ITO and DTOs from saline, 2-fold diluted plasma, 10-fold diluted plasma, and 10-fold diluted blood. We demonstrate that ITO/DTO-MIL extraction is capable of selectively preconcentrating DNA from diluted plasma and blood without additional sample preparation steps. In comparison, streptavidin-coated magnetic beads were unable to selectively extract DNA from 10-fold diluted plasma and 10-fold diluted blood without additional sample clean-up steps. Significantly more DNA could be extracted from 2-fold diluted plasma and 10-fold diluted blood matrices using the DTO probes compared to the ITO probes, likely due to stronger interactions between the probe and MIL. The ability of the DTO-MIL method to selectively preconcentrate small concentrations of DNA from complex biological matrices suggests that this method could be beneficial for ctDNA analysis.
Collapse
|