1
|
Prajapati DG, Mishra A. Reusable semi-IPN polymer networks as long-term antibacterial coatings. Biomater Sci 2024; 12:5349-5360. [PMID: 39248605 DOI: 10.1039/d4bm00938j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The current study aimed to develop a reusable antibacterial coating that can be employed for efficient bacterial killing. We synthesized a water-soluble methacrylamide-based copolymer consisting of cationic and hydrophobic groups and coated it onto a glass surface through the formation of semi-interpenetrating polymer networks (semi-IPN) of aminopropyl triethoxysilane and glutaraldehyde. The coated surface was exposed to Gram-negative and Gram-positive bacteria, where the surface exhibited rapid bacterial killing ability within 5-15 min. The substrates displayed a minimal loss of antibacterial activity even after two water rinse cycles. The coatings were able to kill both the bacterial strains even after 5 weeks, suggesting excellent longevity. The surfaces were stable after repeated wiping cycles with 70% IPA using Kim wipes and 5 min sonication in DI water as no bactericidal activity was lost. Thus, a sustainable antibacterial copolymer coating was developed, and it is stable and reusable against bacterial contamination and could be employed as a long-term antibacterial coating.
Collapse
Affiliation(s)
- Deepak G Prajapati
- Materials Engineering Department, Indian Institute of Technology (IIT) Gandhinagar, 382355-Gujarat, India.
| | - Abhijit Mishra
- Materials Engineering Department, Indian Institute of Technology (IIT) Gandhinagar, 382355-Gujarat, India.
| |
Collapse
|
2
|
Saini RS, Bavabeedu SS, Quadri SA, Gurumurthy V, Kanji MA, Okshah A, Binduhayyim RIH, Alarcón-Sánchez MA, Mosaddad SA, Heboyan A. Mapping the research landscape of nanoparticles and their use in denture base resins: a bibliometric analysis. DISCOVER NANO 2024; 19:95. [PMID: 38814562 PMCID: PMC11139848 DOI: 10.1186/s11671-024-04037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Nanoparticles are increasingly used in dentistry for various applications, including enhancing the mechanical properties of denture base resins. This study aimed to comprehensively review and analyze the research landscape of nanoparticles and their effect on the flexural strength of denture base resins to identify key research areas and trends and to highlight the importance of collaboration between authors and institutions. METHODS A Bibliometric Analysis was conducted using the Keywords "Nanoparticle*" AND "Denture*" OR "CAD/CAM." The literature search from the WOS database was restricted to the publication years 2011 to 2022. RESULTS Key findings encompass an increase in research publications but a decline in citations. Saudi Arabia, China, and Iraq led this research, with specific institutions excelling. Notable journals with high impact factors were identified. Authorship patterns show variations in citation impact. Additionally, keyword analysis revealed that current research trends offer insights into influential authors and their networks. CONCLUSIONS The analysis of nanoparticles and denture base resins reveals a dynamic and evolving landscape that emphasizes the importance of collaboration, staying current with research trends, and conducting high-quality research in this ever-evolving domain.
Collapse
Affiliation(s)
- Ravinder S Saini
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Shashit Shetty Bavabeedu
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | | | - Masroor Ahmed Kanji
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | - Abdulmajeed Okshah
- Department of Dental Technology, COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Mario Alberto Alarcón-Sánchez
- Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Qasr-e-Dasht Street, Shiraz, Iran.
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
3
|
Yang F, Wu C, Jiang Y, Tan L, Shu R. Development of an antibacterial polypropylene/polyurethane composite membrane for invisible orthodontics application. Front Bioeng Biotechnol 2023; 11:1233398. [PMID: 37485323 PMCID: PMC10361250 DOI: 10.3389/fbioe.2023.1233398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
In virtue of the advantages, such as aesthetics, designability, convenient removal, and comfortable experience, invisible orthodontics (IO) have been widely recognized and accepted by the public. However, most of the membranes currently used for IO only meet the requirement of shape retention. Other vital functions, like antibacterial and antifouling activities, are neglected. Herein, antibacterial composite membranes (ACMs) containing polypropylene (PP), thermoplastic polyurethane (TPU) and poly (hexamethylene guanidine) hydrochloride-sodium stearate (PHMG-SS) were facilely manufactured through the hot-pressing membrane forming technology. ACMs were conferred with favorable transparency (∼70% in the visible light range) and excellent antibacterial ability. Experiment results demonstrated that bactericidal rates of ACMs against Staphylococcus aureus, Escherichia coli and Streptococcus mutans were larger than 99.99%. Noticeably, the amount of protein adhered on the surface of ACMs was only 28.1 μg/cm2, showing ideal antifouling performance. Collectively, the mutifunctional ACMs in the study are expected to be prominent alternatives for existing IO.
Collapse
Affiliation(s)
- Feng Yang
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Polymer Materials Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Chenyi Wu
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuanzhang Jiang
- State Key Laboratory of Polymer Materials Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Lin Tan
- State Key Laboratory of Polymer Materials Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology, Sichuan University, Yibin, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wu S, Cui T, Zhang Z, Li Z, Yang M, Zang Z, Li W. Real-time monitoring of the column chromatographic process of Phellodendri Chinensis Cortex part II: multivariate statistical process control based on near-infrared spectroscopy. NEW J CHEM 2022. [DOI: 10.1039/d2nj01781d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multivariate statistical process control has been successfully used for the real-time monitoring of the column chromatographic process of Phellodendri Chinensis Cortex.
Collapse
Affiliation(s)
- Sijun Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Tongcan Cui
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Zhiyong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Zhenzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| |
Collapse
|
5
|
Xu H, Cai Y, Chu X, Chu H, Li J, Zhang D. A mussel-bioinspired multi-functional hyperbranched polymeric coating with integrated antibacterial and antifouling activities for implant interface modification. Polym Chem 2021. [DOI: 10.1039/d1py00246e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of a function integrating strategy, a mussel-inspired hyperbranched polymeric coating with antibacterial and antifouling properties was ingeniously designed and synthesized for the interface modification of implants.
Collapse
Affiliation(s)
- Huilin Xu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Yusong Cai
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Xing Chu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Hetao Chu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering
| | - Dongyue Zhang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|