1
|
Ghosh P, De D, Sahoo P. Development of an assay for colorimetric and fluorometric detection of H 2S. RSC Adv 2024; 14:25071-25076. [PMID: 39135977 PMCID: PMC11317793 DOI: 10.1039/d4ra04339a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
Hydrogen sulfide is a highly toxic gas that can produce extremely rapid CNS and respiratory depression and sometimes becomes fatal at high concentrations. There is no proven antidote for hydrogen sulfide poisoning. Hence, it is important to reduce the production of H2S in several industries, such as oil and gas refining and mining industries. As a consequence, researchers are always inquisitive about inventing different sensing devices or useful tools to detect H2S selectively in a cost-effective manner. Colorimetric and fluorometric detection methods are the most attractive owing to their simplicity, profitability, ease of understanding, and "on-spot" detection convenience. In this research, we developed some colorimetric and fluorometric chemosensors and established an assay for the easy detection of H2S following a specific mechanism. The sensing mechanisms were well established through exhaustive spectroscopic studies and theoretical calculations. We first synthesized a series of chemosensors using 2-hydroxy naphthaldehyde as a primary fluorophore. The chemosensors were developed by incorporating various electron-releasing and donating groups while keeping the binding site unchanged. Subsequently, we compared their efficiency and binding ability towards H2S with a possible mechanism. The chemosensor was employed through a paper strip for demonstration as an "in-field" device by changing the naked-eye and fluorescence color both in liquid and gas phases.
Collapse
Affiliation(s)
- Priyotosh Ghosh
- Department of Chemistry, Visva-Bharati University Santiniketan-731235 India
| | - Diptiman De
- Department of Chemistry, Visva-Bharati University Santiniketan-731235 India
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University Santiniketan-731235 India
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
An active ESIPT based molecular sensor aided with sulfonate ester moiety to track the presence of H2S analyte in realistic samples and HeLa cells. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
A Selective Luminescent Probe to Monitor Cellular ATP: Potential Application for in vivo Imaging in Zebrafish Embryo. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Kundu S, Truong KN, Saha S, Rissanen K, Sahoo P. A handy and accessible tool for identification of Sn(II) in toothpaste. Sci Rep 2022; 12:2305. [PMID: 35145184 PMCID: PMC8831574 DOI: 10.1038/s41598-022-06299-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
An easily accessible colorimetric probe, a carbazole-naphthaldehyde conjugate (CNP), was successfully prepared for the selective and sensitive recognition of Sn(II) in different commercially-available toothpaste and mouth wash samples. The binding mechanism of CNP for Sn2+ was confirmed by UV-Vis, 1H, and 13C NMR titrations. The proposed sensing mechanism was supported by quantum chemical calculations. Selective detection of Sn(II) in the nanomolar range (85 nM), among other interfering metal ions, makes it exclusive. Moreover, Sn2+ can be detected with a simple paper strip from toothpaste, which makes this method handy and easily accessible. The potential application of this system for monitoring Sn2+ can be used as an expedient tool for environmental and industrial purposes.
Collapse
Affiliation(s)
- Shampa Kundu
- Department of Chemistry, Visva-Bharati University, Santiniketan, W.B., 731235, India
| | - Khai-Nghi Truong
- Department of Chemistry, University of Jyvaskyla, Survontie 9 B, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Shrabani Saha
- Department of Chemistry, Visva-Bharati University, Santiniketan, W.B., 731235, India
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, Survontie 9 B, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University, Santiniketan, W.B., 731235, India.
| |
Collapse
|
6
|
Dhivya R, Kavitha V, Gomathi A, Keerthana P, Santhalakshmi N, Viswanathamurthi P, Haribabu J. Dinitrobenzene ether reactive turn-on fluorescence probes for the selective detection of H 2S. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:58-66. [PMID: 34889907 DOI: 10.1039/d1ay01700d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two novel fluorescent probes, namely, 3-(2,4-dinitrophenoxy)-2-(4-(diphenylamino)phenyl)-4H-chromen-4-one (P1) and 3-(2,4-dinitrophenoxy)-2-(pyren-1-yl)-4H-chromen-4-one (P2), were designed and synthesized here. The probes (P1 and P2) were found to be highly selective and sensitive toward hydrogen sulfide (H2S) in the presence of a wide range of anions. The new probes (P1 and P2) were fully characterized by analytical, NMR spectroscopy (1H and 13C), and ESI mass spectrometry. The sensing capability of chemodosimeters (P1 and P2) toward H2S was confirmed by fluorescence studies. The 'turn-on' fluorescence was used to calculate the detection limit of probes (LOD), which were found to be 2.4 and 1.2 μM for P1 and P2, respectively. Moreover, the probes were tested for their cytotoxicity against HeLa cells using the MTT assay and found to be non-cytotoxic in nature; hence, the probes P1 and P2 were successfully utilized to visualize H2S in the living cells.
Collapse
Affiliation(s)
- Rajasekaran Dhivya
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | | | - Asaithambi Gomathi
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | - Ponmudi Keerthana
- Department of Chemistry, Periyar University, Salem, Tamil Nadu 636011, India.
| | | | | | | |
Collapse
|
7
|
Kundu S, Islam MM, Mandal S, Sahoo P. Fluorescence ‘off–on–off’ signaling with zinc ensemble: a new array of investigating prevalence of ATP in liver cancer cells. NEW J CHEM 2021. [DOI: 10.1039/d1nj00051a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Hydroxy naphthaldehyde–picolylamine conjugate (NPAC) ensemble with Zn2+ (NPAC–Zn2+) has been synthesized for the selective recognition and estimation of ATP in human liver cancer cells.
Collapse
Affiliation(s)
- Shampa Kundu
- Department of Chemistry
- Visva-Bharati University
- Santiniketan-731235
- India
| | | | - Sukhendu Mandal
- Department of Microbiology
- University of Calcutta
- Kolkata-700073
- India
| | - Prithidipa Sahoo
- Department of Chemistry
- Visva-Bharati University
- Santiniketan-731235
- India
| |
Collapse
|
8
|
Costa C, Cornacchia M, Pagliero M, Fabiano B, Vocciante M, Reverberi AP. Hydrogen Sulfide Adsorption by Iron Oxides and Their Polymer Composites: A Case-Study Application to Biogas Purification. MATERIALS 2020; 13:ma13214725. [PMID: 33105898 PMCID: PMC7660218 DOI: 10.3390/ma13214725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
An experimental study of hydrogen sulfide adsorption on a fixed bed for biogas purification is proposed. The adsorbent investigated was powdered hematite, synthesized by a wet-chemical precipitation method and further activated with copper (II) oxide, used both as produced and after pelletization with polyvinyl alcohol as a binder. The pelletization procedure aims at optimizing the mechanical properties of the pellet without reducing the specific surface area. The active substrate has been characterized in its chemical composition and physical properties by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), thermogravimetric analysis (TGA) and N2 physisorption/desorption for the determination of surface area. Both powders and pellets have been tested as sorbents for biogas purification in a fixed bed of a steady-state adsorption column and the relevant breakthrough curves were determined for different operating conditions. The performance was critically analyzed and compared with that typical of other commercial sorbents based on zinc oxide or relying upon specific compounds supported on a chemically inert matrix (SulfaTreat®). The technique proposed may represent a cost-effective and sustainable alternative to commercial sorbents in conventional desulphurization processes.
Collapse
Affiliation(s)
- Camilla Costa
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (C.C.); (M.C.); (M.P.); (M.V.)
| | - Matteo Cornacchia
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (C.C.); (M.C.); (M.P.); (M.V.)
| | - Marcello Pagliero
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (C.C.); (M.C.); (M.P.); (M.V.)
| | - Bruno Fabiano
- DICCA, Department of Civil, Chemical and Environmental Engineering, Polytechnic School, Università degli Studi di Genova, Via Opera Pia 15, 16145 Genova, Italy;
| | - Marco Vocciante
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (C.C.); (M.C.); (M.P.); (M.V.)
| | - Andrea Pietro Reverberi
- DCCI, Department of Chemistry and Industrial Chemistry, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy; (C.C.); (M.C.); (M.P.); (M.V.)
- Correspondence:
| |
Collapse
|
9
|
An effective phthalazine-imidazole-based chemosensor for detecting Cu2+, Co2+ and S2− via the color change. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Rapid and selective visual detection of DCNP (nerve gas mimic) in sea water and soil with a simple paper strip. RESULTS IN CHEMISTRY 2019. [DOI: 10.1016/j.rechem.2019.100014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|