1
|
Chemek M, Rhouma FIH, Chemek M, Safi Z, Kadi A, Naili S, Wazzan N, Kamel A. Impact of the chemical insertion of the dimethylamino group on the electronic and optical properties of the 4-(methoxyphenyl acetonitrile) monomer (MPA): a DFT theoretical investigation. J Mol Model 2024; 30:271. [PMID: 39017741 DOI: 10.1007/s00894-024-06062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
CONTEXT Density functional theory (DFT) calculations on the ground and the first excited state are performed on the modified and unmodified 4-(methoxyphenyl acetonitrile) monomer (referred to as MPA). The modified monomer named MFA is obtained by Knoevenagel condensation of MPA with dimethylformamide dimethyl acetal (DMF-DMA). DFT computations show that the chemical grafting of the dimethylamino group onto the MPA unit induces a great change in the geometric, electronic, and optical properties. Going from MPA to MFA monomer, a great change in the frontier orbitals of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the ground and the first excited state is observed. Consequently, a reduction in the energy gap HOMO-LUMO and an enhancement in the absorption and emission properties are observed under the chemical modification. The observed modifications in the electronics and optical properties are the result of the charge transfer appearing between the cyano (C≡N) acceptor group and the dimethylamino (DMF-DMA)-grafted group donor ring. METHODS Quantum chemical calculations were performed in the ground and the first excited state using the density functional theory (DFT), and it extends the time-dependent density functional theory (TD-DFT), implemented in the Gaussian 09 software package. The ground state is obtained by optimization of the studied molecular geometries by employing the DFT/M062X/6-31G(d,p) level of theory. The first excited state is obtained by re-optimization of the ground state geometries using the TD-DFT/M062X/6-31G(d,p) level of theory. The contour plots of the frontier orbitals and the molecular electrostatic potential (MEP) maps are obtained from the ground and the first excited state, optimized geometries, and drawn using Gaussview software.
Collapse
Affiliation(s)
- Mourad Chemek
- Laboratoire de Recherche: Synthèse asymétrique et ingénierie moléculaire de matériaux organiques pour l'électronique organique (LR18ES19), Faculté des Sciences de Monastir, 5000, Monastir, Tunisia.
- Institut Supérieur des Sciences Appliquées et de Technologie de Sousse (ISSAT-Sousse), Université de Sousse-Tunisie, Sousse, Tunisia.
| | - F I H Rhouma
- Laboratory of Nanomaterials and Renewable Energy Systems, Research and Technology Center of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif, Tunisia
| | - Marouane Chemek
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| | - Zaki Safi
- Chemistry Department, Faculty of Science, Al Azhar University-Gaza, P.O Box 1277, Gaza, Palestine
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| | - Salem Naili
- Department of Physics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Nuha Wazzan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O Box 42805, Jeddah, 21589, Saudi Arabia
| | - Alimi Kamel
- Laboratoire de Recherche: Synthèse asymétrique et ingénierie moléculaire de matériaux organiques pour l'électronique organique (LR18ES19), Faculté des Sciences de Monastir, 5000, Monastir, Tunisia
- Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet, Ariana, 2020, Tunisia
| |
Collapse
|
2
|
Idrissi A, Atir R, Elfakir Z, Staoui A, Bouzakraoui S. New bithiophene-based molecules as hole transporting materials for perovskite solar cells and or as donor for organic solar cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123528. [PMID: 37857069 DOI: 10.1016/j.saa.2023.123528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
DFT and TDDFT approaches were used to design three (T16,17,18) molecules based on 4,4'-dimethoxy-2,2'-bithiophene core to explore the influence of substitution of triphenylamine (TPA) fragment by methoxy groups, and introduction of azomethine π-bridges on the optoelectronic properties of hole transporting materials for perovskite solar cells (PSCs) or as donor for organic solar cells (OSCs). To shed light on the efficiency, stability, and solubility several physicochemical parameters were computed in dichloromethane solvent. All designed molecules show appropriate frontier molecular orbital levels, which facilitates effective hole transfer from the perovskite materials to the HTMs in the hole-transporting layer in PSC devices. They all show good efficiency and pore-fillings and are stable and soluble in dichloromethane. Electron-hole pairs can easily dissociate into free charge carriers, especially for T16 and T17; consequently, improve short-circuit current densities and facilitate hole transport. It is also advised to use T18 which includes azomethine bridges as a donor with a non-fullerene Y6 acceptor to create effective OSCs because it exhibits high open circuit voltage, fill factor and low gap energy.
Collapse
Affiliation(s)
- Abdennacer Idrissi
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofaïl University Campus Universitaire, Kénitra, Morocco.
| | - Redouane Atir
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofaïl University Campus Universitaire, Kénitra, Morocco
| | - Zouhair Elfakir
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofaïl University Campus Universitaire, Kénitra, Morocco
| | - Abdelali Staoui
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofaïl University Campus Universitaire, Kénitra, Morocco
| | - Said Bouzakraoui
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofaïl University Campus Universitaire, Kénitra, Morocco
| |
Collapse
|
3
|
AboAlhasan AA, Sakr MA, Abdelbar MF, El-Sheshtawy HS, El-Daly SA, Ebeid EZM, Hussien Al-Ashwal R, Al-Hazmy SM. Enhanced Energy Transfer from Diolefinic Laser Dyes to Meso-tetrakis (4-sulfonatophenyl) Porphyrin Immobilized on Silver Nanoparticles: DFT, TD-DFT and Spectroscopic Studies. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Sirin PS, Kahya ND, Unaleroglu C. Designing of DAD Type Small Semiconductor Molecules andInvestigation of Substituent Effect on Their Molecular, Electronic and Optical Properties: A DFT Study**. ChemistrySelect 2021. [DOI: 10.1002/slct.202103353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pinar Seyitdanlioglu Sirin
- Department of Chemistry Hacettepe Univesity 06800 Ankara Turkey
- Graduate School of Science and Engineering Hacettepe Univesity 06800 Ankara Turkey
| | | | | |
Collapse
|
5
|
Khan MU, Hussain R, Mehboob MY, Khalid M, Ehsan MA, Rehman A, Janjua MRSA. First theoretical framework of Z-shaped acceptor materials with fused-chrysene core for high performance organic solar cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118938. [PMID: 32971344 DOI: 10.1016/j.saa.2020.118938] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Chrysene core containing fused ring acceptor materials have remarkable efficiency for high performance organic solar cells. Therefore, present study has been carried out with the aim to design chrysene based novel Z-shaped electron acceptor molecules (Z1-Z6) from famous Z-shaped photovoltaic material FCIC (R) for organic photovoltaic applications. End-capped engineering at two electron-accepting end groups 1,1-dicyanomethylene-3-indanone of FCIC is made with highly efficient end-capped acceptor moieties and impact of end-capped modifications on structure-property relationship, photovoltaic and electronic properties of newly designed molecules (Z1-Z6) has been studied in detail through DFT and TDDFT calculations. The efficiencies of the designed molecules are evaluated through energy gaps, exciton binding energy along with transition density matrix (TDM) analysis, reorganizational energy of electron and hole, absorption maxima and open circuit voltage of investigated molecules. The designed molecules exhibit red-shift and intense absorption in near-infrared region (683-749 nm) of UV-Vis-NIR absorption spectrum with narrowing of HOMO-LUMO energy gap from 2.31 eV in R to 1.95 in eV in Z5. Moreover, reduction in reorganization energy of electron from 0.0071 (R) to 0.0049 (Z5), and enhancement in open circuit voltage from 1.08 V in R to 1.20 V in Z5 are also observed. Twisted Z-shape of designed molecules prevents self-aggregation that facilitates miscibility of donor and acceptor. Low values of binding energy, excitation energy, and reorganizational energy (electron and hole) suggest that novel designed molecules offer high charge mobilities as compared to FCIC. Our findings indicate that these novel designed molecules can display better photovoltaic parameters and are suitable candidates if used in organic solar cells.
Collapse
Affiliation(s)
- Muhammad Usman Khan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan.
| | | | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Ali Ehsan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Abdul Rehman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | | |
Collapse
|
6
|
Khan MU, Mehboob MY, Hussain R, Fatima R, Tahir MS, Khalid M, Braga AAC. Molecular designing of high‐performance 3D star‐shaped electron acceptors containing a truxene core for nonfullerene organic solar cells. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Muhammad Usman Khan
- Department of Chemistry University of Okara Okara Pakistan
- Department of Applied Chemistry Government College University Faisalabad Pakistan
| | | | - Riaz Hussain
- Department of Chemistry University of Okara Okara Pakistan
| | - Rafia Fatima
- Department of Chemistry University of Lahore Lahore Pakistan
| | - Muhammad Suleman Tahir
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan Pakistan
| | - Muhammad Khalid
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan Pakistan
| | | |
Collapse
|
7
|
Computational design of new organic (D–π–A) dyes based on benzothiadiazole for photovoltaic applications, especially dye-sensitized solar cells. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04150-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|