1
|
Das B, Devi M, Deb S, Dhar SS. Boosting photocatalytic property of graphitic carbon nitride with metal complex fabrication for efficient degradation of organic pollutants. CHEMOSPHERE 2023; 323:138230. [PMID: 36863630 DOI: 10.1016/j.chemosphere.2023.138230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The development of efficient and stable photocatalysts for degradation of refractory pollutants using minimal amounts of metal remains a major challenge. Herein, we synthesize a novel catalyst by fabrication of manganese (III) acetylacetonate complex [Mn (acac)3] over graphitic carbon nitride (GCN) denoted as 2-Mn/GCN by facile ultra-sonication method. The fabrication of the metal complex enables the migration of electrons from the conduction band of graphitic carbon nitride to Mn (acac)3, and migration of holes from valence band of Mn (acac)3 to GCN upon irradiation. Exploiting the improved surface properties, light absorption, and charge separation ensure generation of superoxide and hydroxyl radicals resulting in the rapid degradation of a variety of pollutants. The designed 2-Mn/GCN catalyst realized 99.59% rhodamine b (RhB) degradation in 55 min and 97.6% metronidazole (MTZ) degradation in 40 min with 0.7% Mn content. The influence of catalyst amount, different pH and presence of anions on the degradation kinetics was also explored to offer insights into photoactive material design.
Collapse
Affiliation(s)
- Bishal Das
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| | - Meghali Devi
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| | - Shoubhik Deb
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| | - Siddhartha Sankar Dhar
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India.
| |
Collapse
|
2
|
Recent Advances in Endocrine Disrupting Compounds Degradation through Metal Oxide-Based Nanomaterials. Catalysts 2022. [DOI: 10.3390/catal12030289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endocrine Disrupting Compounds (EDCs) comprise a class of natural or synthetic molecules and groups of substances which are considered as emerging contaminants due to their toxicity and danger for the ecosystems, including human health. Nowadays, the presence of EDCs in water and wastewater has become a global problem, which is challenging the scientific community to address the development and application of effective strategies for their removal from the environment. Particularly, catalytic and photocatalytic degradation processes employing nanostructured materials based on metal oxides, mainly acting through the generation of reactive oxygen species, are widely explored to eradicate EDCs from water. In this review, we report the recent advances described by the major publications in recent years and focused on the degradation processes of several classes of EDCs, such as plastic components and additives, agricultural chemicals, pharmaceuticals, and personal care products, which were realized by using novel metal oxide-based nanomaterials. A variety of doped, hybrid, composite and heterostructured semiconductors were reported, whose performances are influenced by their chemical, structural as well as morphological features. Along with photocatalysis, alternative heterogeneous advanced oxidation processes are in development, and their combination may be a promising way toward industrial scale application.
Collapse
|
3
|
Kalhorizadeh T, Dahrazma B, Zarghami R, Mirzababaei S, Kirillov AM, Abazari R. Quick removal of metronidazole from aqueous solutions using metal–organic frameworks. NEW J CHEM 2022. [DOI: 10.1039/d1nj06107k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two MOFs were assembled, characterized and investigated in detail as efficient adsorbents for removal of the metronidazole antibiotic. Adsorption isotherms and kinetic features were also studied.
Collapse
Affiliation(s)
- Tina Kalhorizadeh
- Department of Civil and Environment Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Behnaz Dahrazma
- Department of Civil and Environment Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Reza Zarghami
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | - Soheyl Mirzababaei
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | - Alexander M. Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran
| |
Collapse
|
4
|
Zhu D, Huang Z, Wang H, Lu Q, Ruan G, Zhao C, Du F. Sustainable and reusable electrospun g-C3N5/MIL-101(Fe)/poly(acrylonitrile-co-maleic acid) nanofibers for photocatalytic degradation of emerging pharmaceutical pollutants. NEW J CHEM 2022. [DOI: 10.1039/d2nj02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To fabricate sustainable and reusable photocatalyst materials is urgent and desirable for removal of emerging pharmaceutical pollutants (EPPs) in environment water samples. In this work, we described the fabrication of...
Collapse
|
5
|
Kalita J, Bharali L, Dhar SS. Zn-doped hydroxyapatite@g-C 3N 4: a novel efficient visible-light-driven photocatalyst for degradation of pharmaceutical pollutants. NEW J CHEM 2022. [DOI: 10.1039/d2nj04087e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heterojunction formation has been shown to be an effective technique for tuning nanomaterial features such as chemical reactivity and optical performance.
Collapse
Affiliation(s)
- Juri Kalita
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| | - Linkon Bharali
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| | - Siddhartha S. Dhar
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| |
Collapse
|
6
|
John A, Rajan MS, Thomas J. Carbon nitride-based photocatalysts for the mitigation of water pollution engendered by pharmaceutical compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24992-25013. [PMID: 33772713 DOI: 10.1007/s11356-021-13528-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In recent decades, the destructive impact of active pharmaceutical ingredients (API) present in surface and drinking water on aquatic and terrestrial life forms becomes a major concern of researchers. API like diclofenac (DCF), carbamazepine (CBZ), tetracycline (TC), and sulfamethoxazole (SME) found in water bodies cause antimicrobial resistance and are potent carcinogens and endocrine disruptors. Conventional wastewater treatment methods possess some drawbacks and were found to be insufficient for the effective removal of APIs. Visible light-assisted semiconductor photocatalysis has become an alternative choice for tackling this worse scenario. Graphitic carbon nitride, a metal-free visible light active semiconductor photocatalyst is an emerging hotspot nanomaterial whose practical utility in water purification is widely recognized. This review comes up with an insightful outlook on the panorama of recent progress in the field of g-C3N4-assisted photocatalytic systems for the eradication of APIs. In addition, the review summarizes various strategies adopted for the broad-spectrum utilization of visible light and the enhancement of charge separation of pristine g-C3N4. The mechanistic pathways followed by different pharmaceuticals during their photocatalytic degradation process were also briefly discussed.
Collapse
Affiliation(s)
- Anju John
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India
| | - Mekha Susan Rajan
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India
| | - Jesty Thomas
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India.
| |
Collapse
|
7
|
Wei D, Huang L, Liang H, Zou J, Chen W, Yang C, Hou Y, Zheng D, Zhang J. Photocatalytic hydroxylation of benzene to phenol over organosilane-functionalized FeVO4 nanorods. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00890k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface silylation of FeVO4 with organosilane functional groups is a promising strategy to realize kinetic control of photocatalytic benzene hydroxylation reactions.
Collapse
Affiliation(s)
- Danlei Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Lianqi Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Hanying Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Junhua Zou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Wenwen Chen
- College of Environment & Resources, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Dandan Zheng
- College of Environment & Resources, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Jinshui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| |
Collapse
|
8
|
Chakraborty D, Devi M, Das B, Barbhuiya MH, Dhar SS, Chowdhury A. A benevolent direction to environmental suitability: ionic liquid immobilized MoO 3 nanoparticles used in the efficient visible light-driven photocatalytic degradation of antibiotics. NEW J CHEM 2021. [DOI: 10.1039/d1nj01557e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This paper summarizes the synthesis of a novel MoO3-bonded imidazolium sulfonic acid chloride (MoO3-IL) using a facile precipitation method and its application in the degradation of two organic pollutants.
Collapse
Affiliation(s)
| | - Meghali Devi
- Department of Chemistry, National Institute of Technology, Silchar
- Cachar
- India
| | - Bishal Das
- Department of Chemistry, National Institute of Technology, Silchar
- Cachar
- India
| | - Monjur H. Barbhuiya
- Department of Chemistry, National Institute of Technology, Silchar
- Cachar
- India
| | - Siddhartha S. Dhar
- Department of Chemistry, National Institute of Technology, Silchar
- Cachar
- India
| | - Avijit Chowdhury
- Department of Physics
- National Institute of Technology
- Cachar
- India
| |
Collapse
|
9
|
Das B, Devi M, Hassan Barbhuiya M, Sankar Dhar S. Sodium and Sulfur Co‐Doped Graphitic Carbon Nitride: A Novel and Effective Visible Light Driven Photocatalyst with Tunable Bandgap for Degradation of Eosin Yellow. ChemistrySelect 2020. [DOI: 10.1002/slct.202003276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bishal Das
- Department of Chemistry National Institute of Technology, Silchar Silchar 788010 Assam India
| | - Meghali Devi
- Department of Chemistry National Institute of Technology, Silchar Silchar 788010 Assam India
| | - Monjur Hassan Barbhuiya
- Department of Chemistry National Institute of Technology, Silchar Silchar 788010 Assam India
| | - Siddhartha Sankar Dhar
- Department of Chemistry National Institute of Technology, Silchar Silchar 788010 Assam India
| |
Collapse
|
10
|
Xiao J, Liu X, Pan L, Shi C, Zhang X, Zou JJ. Heterogeneous Photocatalytic Organic Transformation Reactions Using Conjugated Polymers-Based Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03480] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xianlong Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
11
|
Recent Strategies for Environmental Remediation of Organochlorine Pesticides. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The amount of organochlorine pesticides in soil and water continues to increase; their presence has surpassed maximum acceptable concentrations. Thus, the development of different removal strategies has stimulated a new research drive in environmental remediation. Different techniques such as adsorption, bioremediation, phytoremediation and ozonation have been explored. These techniques aim at either degrading or removal of the organochlorine pesticides from the environment but have different drawbacks. Heterogeneous photocatalysis is a relatively new technique that has become popular due to its ability to completely degrade different toxic pollutants—instead of transferring them from one medium to another. The process is driven by a renewable energy source, and semiconductor nanomaterials are used to construct the light energy harvesting assemblies due to their rich surface states, large surface areas and different morphologies compared to their corresponding bulk materials. These make it a green alternative that is cost-effective for organochlorine pesticides degradation. This has also opened up new ways to utilize semiconductors and solar energy for environmental remediation. Herein, the focus of this review is on environmental remediation of organochlorine pesticides, the different techniques of their removal from the environment, the advantages and disadvantages of the different techniques and the use of specific semiconductors as photocatalysts.
Collapse
|