1
|
Pradhan TR, Park JK. Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes. Acc Chem Res 2025; 58:281-298. [PMID: 39752235 DOI: 10.1021/acs.accounts.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies. In this regard, our group, alongside others, has established some new approaches that have emerged as a suitable platform for the synthesis of functionalized enamides. This Account reviews recent developments in the field, highlighting new modes of reactivity and selectivity, atom-economical functionalizations, and strategies for regio- and stereocontrol, while providing mechanistic insights into related transformations.Our study is systematically organized into two sections based on substrate type and chronological research progression. In the first section, we establish a platform by controlling allenamide-derived intermediates, enabling both allenamide-alkyne (AA) cross-coupling and a few novel electrophile-promoted hydrofunctionalization reactions. The unprecedented selectivity in Pd-catalyzed allenamide-alkyne cross-coupling is achieved through neighboring group chelation, with phosphine ligand selection controlling the reaction outcome. In parallel, the electrophile-promoted functionalizations─including haloalkynylation, hydrooxycarbonylation, hydrodifluoroalkylation, and intermolecular hydroamination─are achieved through strategic selection of electrophiles or their precursors.Additionally, our findings demonstrate how ynamides' reactivity toward both electrophiles and nucleophiles, controlled through activator modulation, expands the scope of accessible transformations. Key findings include: (1) chemoselective [2 + 2 + 2] annulation through efficient trapping of N-arylated nitrilium electrophiles by ynamides, (2) divergent C-H annulation of indole-derived vinylogous ynamides controlled by metal and ligand selection via intramolecular hydroarylation, (3) bromoalkynylation-enabled functional group migration through a novel 1,3-alkynyl shift.The final section explores how N-electron polarization in 1,3-enynes enables new chemoselectivity in metal-free inter- and intramolecular couplings with indole substrates. Our findings demonstrate that modulating N-electron conjugation within the enyne skeleton─through both linear and cross conjugation─can direct activation pathways and control product selectivity.This Account aims to stimulate broader research into the intermediate-controlled functionalization of activated π-systems. Future research directions include advanced activator design, novel functional group migration strategies, and deeper mechanistic studies to enable rational reaction development.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Pradhan TR, Farah AO, Sagar K, Wise HR, Srimannarayana M, Cheong PHY, Park JK. Acetate Assistance in Regioselective Hydroamination of Allenamides: A Combined Experimental and Density Functional Theory Study. J Org Chem 2024; 89:5927-5940. [PMID: 38651750 DOI: 10.1021/acs.joc.3c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A key factor in the development of selective nucleophilic addition to allenamides is controlling the reactivity of electrophilic intermediates, which is generally achieved using an electrophilic activator via conjugated iminium intermediates. In this combined experimental and computational study, we show that a general and highly chemoselective hydroamination of allenamides can be accomplished using a combination of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and NaOAc. Experimental mechanistic studies revealed that HFIP mediates proton transfer to activate the allenamide, while the acetate additive significantly contributes to N-selective interception. This strategy enables a general hydroamination of allenamides without the use of metals. We demonstrated that various functionalized 1,3-diamines could be readily synthesized and diversified into value-added structural motifs. Detailed mechanistic investigations using the density functional theory revealed the role of NaOAc in the formation of reactive electrophilic intermediates, which ultimately governed the selective formation of 1,3-diamine products. Critically, calculations of the potential energy surface around the proton-transfer transition state revealed that two different reactive electrophilic intermediates were formed when NaOAc was added.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kadiyala Sagar
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Telangana 502329, India
- Medicinal Chemistry Division, Aragen Life Sciences Pvt. Ltd., Hyderabad 500076, India
| | - Henry R Wise
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Malempati Srimannarayana
- Department of Chemistry, School of Science, GITAM University (Hyderabad Campus), Telangana 502329, India
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Quintavalla A, Carboni D, Brusa A, Lombardo M. Selective Hydrofunctionalization of N-Allenyl Derivatives with Heteronucleophiles Catalyzed by Brønsted Acids. J Org Chem 2024; 89:2320-2342. [PMID: 38298114 DOI: 10.1021/acs.joc.3c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In this study, we present a novel and environmentally sustainable protocol for the γ-hydrofunctionalization of N-allenyl compounds using various heteronucleophiles catalyzed solely by simple Brønsted acids. The method displays remarkable attributes, highlighting its sustainability, efficiency, regio- and stereoselectivity, as well as its versatile applicability to diverse heteroatom-containing enamides. Notably, our approach eliminates the need for metal catalysts and toxic solvents, representing a significant advancement in greener chemistry practices. We demonstrate the broad scope of our protocol by successfully scaling up reactions to gram-scale syntheses, underscoring its robustness for potential industrial implementation. The resulting γ-heterosubstituted enamides offer new possibilities for further synthetic transformations, yielding highly functionalized compounds with diverse applications. Mechanistic investigations reveal the pivotal role of CSA as a catalyst, enabling alcohol addition via a covalent activation mode.
Collapse
Affiliation(s)
- Arianna Quintavalla
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Davide Carboni
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Alessandro Brusa
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Marco Lombardo
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
4
|
Silver-Catalyzed Cascade Cyclization of Amino-NH-1,2,3-Triazoles with 2-Alkynylbenzaldehydes: An Access to Pentacyclic Fused Triazoles. Molecules 2022; 27:molecules27217567. [PMID: 36364393 PMCID: PMC9655256 DOI: 10.3390/molecules27217567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
An operationally simple Ag(I)-catalyzed approach for the synthesis of isoquinoline and quinazoline fused 1,2,3-triazoles was developed by a condensation and amination cyclization cascade of amino-NH-1,2,3-triazoles with 2-alkynylbenzaldehydes involving three new C-N bond formations in one manipulation, in which the group of -NH of the triazole ring serves as a nucleophile to form the quinazoline skeleton. The efficient protocol can be applied to a variety of substrates containing a range of functional groups, delivering novel pentacyclic fused 1,2,3-triazoles in good-to-excellent yields.
Collapse
|
5
|
Tan X, Zhao K, Zhong X, Yang L, Dong Y, Wang T, Yu S, Li X, Zhao Z. Synthesis of 1,2-diselenides via potassium persulfate-mediated diselenation of allenamides with diselenides. Org Biomol Chem 2022; 20:6566-6570. [PMID: 35903979 DOI: 10.1039/d2ob00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient potassium persulfate-mediated radical addition of allenamides with diselenides was developed to create a workable route to 1,2-diselenide products. The reaction tolerates a wide spectrum of functional groups to deliver the products in good to excellent yields. Mechanistic investigations including a calculation study indicated that the radical cascade proceeds through a vinyl radical intermediate, which is formed via a selenium radical added to the terminal CC double bond of allenamides.
Collapse
Affiliation(s)
- Xiaoju Tan
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Kun Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Xuefang Zhong
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Lan Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Yiming Dong
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Tianmi Wang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Shengping Yu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
6
|
Zhu LL, Wang Y, Zheng Y, Tian L, Ramadoss V, Zhang H. Recent Developments in N2-Selective Functionalizations of 1,2,3-Triazoles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe widespread use of 1,2,3-triazole compounds in drugs has resulted in a great interest in the efficient synthesis of N2-substituted 1,2,3-triazoles via post triazole functionalization methods. At present, there are many methods for the synthesis of N1-substituted 1,2,3-triazole compounds, but the development of convenient methods for the N2-selective functionalization of 1,2,3-triazoles remains challenging. In general, the greater stability of the N1 tautomer makes the N2 position a non-preferable reactive site, which has limited the application of 1,2,3-triazoles. In this review, we summarized advances in the direct N2-selective functionalization of 1,2,3-triazoles since 2008.1 Introduction2 N2-Alkylation3 N2-Allylation4 N2-Propargylation5 N2-Alkenylation6 N2-Alkynylation7 N2-Arylation8 Conclusions and Outlook
Collapse
Affiliation(s)
- Li-Li Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University
| | - Yahui Wang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University
| | - Yue Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University
| | - Lifang Tian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University
| | - Velayudham Ramadoss
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University
| |
Collapse
|
7
|
Zhou T, Zhu Y, Zhang H, He J, Li H, Lang M, Wang J, Peng S. One‐Pot Synthesis of 1,2,3‐Triazolo Polycyclic Systems via Copper‐Catalyzed/TsOH‐Promoted Tandem Annulation of 1,6‐Allenynes with Organic Azides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ting Zhou
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Yuqi Zhu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Hong Zhang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Jieyin He
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Hongguang Li
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Ming Lang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Jian Wang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
- School of Pharmaceutical Sciences Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology Ministry of Education Tsinghua University Beijing 100084 People's Republic of China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| |
Collapse
|
8
|
NIS-promoted intramolecular cyclization of allenamides for the synthesis of tetrahydro-β-carbolines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Li X, Liu Y, Ding N, Tan X, Zhao Z. Recent progress in transition-metal-free functionalization of allenamides. RSC Adv 2020; 10:36818-36827. [PMID: 35517974 PMCID: PMC9057111 DOI: 10.1039/d0ra07119f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
With their unique reactivity, selectivity, availability and stability, allenamides are receiving increasing attention, and reports on the functionalization of allenamides are rapidly growing in number. In this review, recent developments in transition-metal-free functionalization of allenamides are highlighted. First, developments based on allenamide reactivity are simply introduced. After presenting the advantages of allenamides, recent progress in transition-metal-free functionalization of allenamides is classified and discussed in detail in four parts: chiral phosphoric-acid-catalyzed asymmetric functionalization, iodine-reagent-mediated functionalization, 1,3-H-shift reaction of allenamides, and other metal-free allenamide functionalizations. For the majority of these transformations, plausible mechanisms are presented in detail. The purpose of this review is to provide illustrations of elegant allenamide chemistry, and thereby elicit further interest from the synthetic community to develop novel allenamide methodology.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 People's Republic of China
| | - Yongchun Liu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 People's Republic of China
| | - Na Ding
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 People's Republic of China
| | - Xiaoju Tan
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 People's Republic of China
| | - Zhigang Zhao
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 People's Republic of China
| |
Collapse
|
10
|
Yuan X, Tan X, Ding N, Liu Y, Li X, Zhao Z. NIS-promoted intermolecular bis-sulfenylation of allenamides via a two-step radical process: synthesis of 1,3-dithioethers. Org Chem Front 2020. [DOI: 10.1039/d0qo00690d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first report of NIS-promoted two-step radical addition of thiols to allenamides to provide an efficient route for accessing 1,3-dithioethers.
Collapse
Affiliation(s)
- Xiao Yuan
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| | - Xiaoju Tan
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| | - Na Ding
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| | - Yongchun Liu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- PR China
| |
Collapse
|