1
|
Banana T, Rajput SS, Chandravanshi N, Alam MM. Effect of meso-pentafluorophenyl group on two-photon absorption in heterocorroles and heterocorrins. Phys Chem Chem Phys 2024; 26:27694-27703. [PMID: 39469992 DOI: 10.1039/d4cp03450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Owing to their high reactivity, the meso-positions of corroles and corrins are usually protected by some bulky groups. These groups in addition to the said purpose may also affect the photophysical properties of such systems. However, there is no systematic study in the literature exploring this effect. In this work, we target to answer how the meso-substitution affects the photophysical properties in some heterocorroles and heterocorrins. We considered one of the commonly used substitutions, i.e., pentafluorophenyl (-PFPh), at meso positions of 26 heterocorroles and heterocorrins. We employed the state-of-the-art CC2 method in conjunction with resolution-of-identity approximation to study the charge-transfer and one- and two-photon absorption in these systems. It is further explored using a four-state model that helps in understanding the contribution of various transition dipole moments and their relative orientation. At the end, we also investigated the effect of other substitutions such as -CH3, -CF3, -C2H3, -OMe, -phenyl, and -tolyl on two-photon activity.
Collapse
Affiliation(s)
- Tejendra Banana
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Neelam Chandravanshi
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India
| |
Collapse
|
2
|
Soy R, Babu B, Mack J, Nyokong T. The photodynamic activity properties of a series of structurally analogous tetraarylporphyrin, chlorin and N-confused porphyrin dyes and their Sn(IV) complexes. Photodiagnosis Photodyn Ther 2023; 44:103815. [PMID: 37777078 DOI: 10.1016/j.pdpdt.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
A series of tetraarylporphyrin, -chlorin and N-confused porphyrin dyes with 4‑methoxy‑meso-aryl rings (1-Por, 1-Chl and 1-NCP) and their Sn(IV) complexes (1-SnPor, 1-SnChl and 1-SnNCP) have been synthesized and characterized. The heavy atom effect of the Sn(IV) ion results in relatively high singlet oxygen quantum yield values of 0.67, 0.71 and 0.85 for 1-SnPor, 1-SnChl and 1-SnNCP, respectively. The photodynamic activities of 1-Por, 1-Chl, 1-NCP, 1-SnPor, 1-SnChl and 1-SnNCP were determined against MCF-7 breast cancer cells through illumination with Thorlabs 625 or 660 nm (240 or 280 mW.cm-2) light emitting diodes (LEDs) for 20 min. The IC50 values for 1-SnChl and 1-SnNCP lie between 1.4 - 6.1 and 1.6 - 4.8 µM upon photoirradiation with the 660 and 625 nm LEDs, respectively, while higher values of >10 µM were obtained for 1-SnPor and the free base dyes. In a similar manner, 1-SnChl and 1-SnNCP were found to also have significantly higher photodynamic antimicrobial activity against planktonic Gram-(+) Staphylococcus aureus and Gram-(-) Escherichia coli bacteria than the other dyes studied. Upon illumination with Thorlabs 625 and 660 nm LEDs for 75 min, Log10 reduction values of 7.62 and > 2.40-3.69 were obtained with 1 and 5 µM solutions, respectively.
Collapse
Affiliation(s)
- Rodah Soy
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa; Department of Chemistry, SRM University - AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
3
|
Ren BP, Yang G, Lv ZY, Liu ZY, Zhang H, Si LP, Liu HY. First application of Sn (IV) corrole as electrocatalyst in hydrogen evolution reaction. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Soy R, Babu B, Mack J, Nyokong T. The Photodynamic Anticancer and Antibacterial Activity Properties of a Series of meso-Tetraarylchlorin Dyes and Their Sn(IV) Complexes. Molecules 2023; 28:molecules28104030. [PMID: 37241769 DOI: 10.3390/molecules28104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A series of tetraarylchlorins with 3-methoxy-, 4-hydroxy- and 3-methoxy-4-hydroxyphenyl meso-aryl rings (1-3-Chl) and their Sn(IV) complexes (1-3-SnChl) were synthesized and characterized so that their potential utility as photosensitizer dyes for use in photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) can be assessed. The photophysicochemical properties of the dyes were assessed prior to in vitro PDT activity studies against MCF-7 breast cancer cells through irradiation with Thorlabs 625 or 660 nm LED for 20 min (240 or 280 mW·cm-2). PACT activity studies were performed against both planktonic bacteria and biofilms of Gram-(+) S. aureus and Gram-(-) E. coli upon irradiation with Thorlabs 625 and 660 nm LEDs for 75 min. The heavy atom effect of the Sn(IV) ion results in relatively high singlet oxygen quantum yield values of 0.69-0.71 for 1-3-SnChl. Relatively low IC50 values between 1.1-4.1 and 3.8-9.4 µM were obtained for the 1-3-SnChl series with the Thorlabs 660 and 625 nm LEDs, respectively, during the PDT activity studies. 1-3-SnChl were also found to exhibit significant PACT activity against planktonic S. aureus and E. coli with Log10 reduction values of 7.65 and >3.0, respectively. The results demonstrate that the Sn(IV) complexes of tetraarylchlorins merit further in depth study as photosensitizers in biomedical applications.
Collapse
Affiliation(s)
- Rodah Soy
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
5
|
Sharma VK, Assaraf YG, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles. Drug Resist Updat 2023; 67:100931. [PMID: 36739808 DOI: 10.1016/j.drup.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corroles provide a remarkable opportunity for the development of cancer theranostic agents among other porphyrinoids. While most transition metal corrole complexes are only therapeutic, post-transition metallocorroles also find their applications in bioimaging. Moreover, corroles exhibit excellent photo-physicochemical properties, which can be harnessed for antitumor and antimicrobial interventions. Nevertheless, these intriguing, yet distinct properties of corroles, have not attained sufficient momentum in cancer research. The current review provides a comprehensive summary of various cancer-relevant features of corroles ranging from their structural and photophysical properties, chelation, protein/corrole interactions, to DNA intercalation. Another aspect of the paper deals with the studies of corroles conducted in vitro and in vivo with an emphasis on medical imaging (optical and magnetic resonance), photo/sonodynamic therapies, and photodynamic inactivation. Special attention is also given to a most recent finding that shows the development of pH-responsive phosphorus corrole as a potent antitumor drug for organelle selective antitumor cytotoxicity in preclinical studies. Another biomedical application of corroles is also highlighted, signifying the application of water-soluble and completely lipophilic corroles in the photodynamic inactivation of microorganisms. We strongly believe that future studies will offer a greater possibility of utilizing advanced corroles for selective tumor targeting and antitumor cytotoxicity. In the line with future developments, an ideal pipeline is envisioned on grounds of cancer targeting nanoparticle systems upon decoration with tumor-specific ligands. Hence, we envision that a bright future lies ahead of corrole anticancer research and therapeutics.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
6
|
Dingiswayo S, Burgess K, Babu B, Mack J, Nyokong T. Photodynamic Antitumor and Antimicrobial Activities of Free-Base Tetra(4-methylthiolphenyl)chlorin and Its Tin(IV) Complex. Chempluschem 2022; 87:e202200115. [PMID: 35604018 DOI: 10.1002/cplu.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Indexed: 11/09/2022]
Abstract
Meso-tetra(4-methylthiolphenyl)chlorin (3) and its Sn(IV) complex (3-Sn) have been synthesized and characterized. The heavy atom effects of the Sn(IV) ion and sulfur atoms result in relatively high singlet oxygen quantum yield values of 0.40 and 0.48. The photodynamic activities against MCF-7 breast cancer cells were determined through irradiation with a Thorlabs 660 nm LED for 30 min (280 mW.cm-2). IC50 values of 7.8 and 3.9 μM were obtained, respectively. 3-Sn was found to have significant photodynamic antimicrobial activity against both gram-(+) S. aureus and gram-(-) E. coli bacteria upon irradiation with a Thorlabs 660 nm LED for 75 min.
Collapse
Affiliation(s)
- Somila Dingiswayo
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Kristen Burgess
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| |
Collapse
|
7
|
Di Natale C, Gros CP, Paolesse R. Corroles at work: a small macrocycle for great applications. Chem Soc Rev 2022; 51:1277-1335. [PMID: 35037929 DOI: 10.1039/d1cs00662b] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corrole chemistry has witnessed an impressive boost in studies in the last 20 years, thanks to the possibility of preparing corrole derivatives by simple synthetic procedures. The investigation of a large number of corroles has highlighted some peculiar characteristics of these macrocycles, having features different from those of the parent porphyrins. With this progress in the elucidation of corrole properties, attention has been focused on the potential for the exploitation of corrole derivatives in different important application fields. In some areas, the potential of corroles has been studied in certain detail, for example, the use of corrole metal complexes as electrocatalysts for energy conversion. In some other areas, the field is still in its infancy, such as in the exploitation of corroles in solar cells. Herein, we report an overview of the different applications of corroles, focusing on the studies reported in the last five years.
Collapse
Affiliation(s)
- Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Viale del Politecnico, 00133 Rome, Italy.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France.
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
8
|
Babu B, Mack J, Nyokong T. A Sn( iv) porphyrin with mitochondria targeting properties for enhanced photodynamic activity against MCF-7 cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj00350c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A Sn(iv) porphyrin with a mitochondria targeting triphenylphosphonium moiety has a high ΦΔ value (ca. 0.72) and does not aggregate in aqueous solution. The dye exhibits favorable photodynamic activity against MCF-7 cells with an IC50 value of 2.9 μM.
Collapse
Affiliation(s)
- Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
9
|
Niu Y, Wang L, Guo Y, Zhu W, Soy R, Babu B, Mack J, Nyokong T, Xu HJ, Liang X. GaIIItriarylcorroles with Push-Pull Substitutions: Synthesis, Electronic Structure and Biomedical Applications. Dalton Trans 2022; 51:10543-10551. [DOI: 10.1039/d2dt01262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two A2B type H3corroles and two GaIIItriarylcorroles with carbazole substitutions at 10-positions were synthesized and characterized. An analysis of structure-property relationships of the corroles have been carried out by investigating...
Collapse
|
10
|
Hu X, Wang S, Luo Q, Ge B, Cheng Q, Dong C, Xu J, Ding H, Xu M, Tedesco AC, Huang X, Zhang R, Bi H. Synthesis of Sn nanocluster@carbon dots for photodynamic therapy application. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Lee W, Zhan X, Palma J, Vestfrid J, Gross Z, Churchill DG. Minding our P-block and Q-bands: paving inroads into main group corrole research to help instil broader potential. Chem Commun (Camb) 2021; 57:4605-4641. [PMID: 33881055 DOI: 10.1039/d1cc00105a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Main group chemistry is often considered less "dynamic" than transition metal (TM) chemistry because of predictable VSEPR-based central atom geometries, relatively slower redox switching and lack of electronic d-d transitions. However, we delineate what has been made possible with main group chemistry to give it its proper due and up-to-date treatment. The huge untapped potential regarding photophysical properties and functioning hereby spurred us to review a range of corrole reports addressing primarily photophysical trends, synthetic aspects, and important guidelines regarding substitution and inorganic principles. We also look at Ag and Au systems and also consider substitutions such as CF3, halogens, additives and also counterions. Throughout, as well as at the end of this review, we suggest various future directions; further future industrial catalytic and health science research is encouraged.
Collapse
Affiliation(s)
- Woohyun Lee
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Xuan Zhan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Jaymee Palma
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jenya Vestfrid
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel. and Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S3E5, Canada.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - David G Churchill
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea and KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Babu B, Mack J, Nyokong T. Photodynamic activity of Sn(IV) tetrathien-2-ylchlorin against MCF-7 breast cancer cells. Dalton Trans 2021; 50:2177-2182. [PMID: 33496304 DOI: 10.1039/d0dt03958f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new readily-synthesized Sn(iv) tetraarylchlorin with thien-2-yl substituents (SnC) has been prepared and fully characterized by various spectroscopic techniques and its photophysical and photochemical properties, such as the singlet oxygen quantum yield (ΦΔ), fluorescence quantum yield (ΦF), triplet lifetime (τT) and photostability, have been evaluated. SnC has an unusually high ΦΔ value of 0.89 in DMF. Studies on the photodynamic activity against MCF-7 breast cancer cells exhibited a very low IC50 value of 0.9 μM and high phototoxicity (dark versus light) indices of >27.8 after irradiation with a 660 nm Thorlabs LED (280 mW cm-2). The results demonstrate that Sn(iv) tetraarylchlorins of this type are suitable candidates for further in-depth PDT studies.
Collapse
Affiliation(s)
- Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
13
|
Dingiswayo S, Babu B, Prinsloo E, Mack J, Nyokong T. A comparative study of the photophysicochemical and photodynamic activity properties of meso-4-methylthiophenyl functionalized Sn(IV) tetraarylporphyrins and triarylcorroles. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tin(IV) complexes of a 4-methylthiophenyl functionalized porphyrin (1-Sn) and its corrole analogue (2-Sn) were synthesized so that their photophysicochemical properties and photodynamic activities against MCF-7 breast cancer cells could be compared. Singlet oxygen luminescence studies revealed that 1-Sn and 2-Sn have comparable [Formula: see text] values in DMF of 0.59 and 0.60, respectively, while the IC[Formula: see text] values after irradiation of MCF-7 cells for 30 min with a Thorlabs 625 nm LED (432 J · cm[Formula: see text] were determined to be 12.4 and 8.9 [Formula: see text]M. The results demonstrate that the cellular uptake of 2-Sn and its molar absorptivity at the irradiation wavelength play a crucial role during in vitro cytotoxicity studies.
Collapse
Affiliation(s)
- Somila Dingiswayo
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6140, South Africa
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
14
|
Lopes SMM, Pineiro M, Pinho e Melo TMVD. Corroles and Hexaphyrins: Synthesis and Application in Cancer Photodynamic Therapy. Molecules 2020; 25:E3450. [PMID: 32751215 PMCID: PMC7435872 DOI: 10.3390/molecules25153450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Corroles and hexaphyrins are porphyrinoids with great potential for diverse applications. Like porphyrins, many of their applications are based on their unique capability to interact with light, i.e., based on their photophysical properties. Corroles have intense absorptions in the low-energy region of the uv-vis, while hexaphyrins have the capability to absorb light in the near-infrared (NIR) region, presenting photophysical features which are complementary to those of porphyrins. Despite the increasing interest in corroles and hexaphyrins in recent years, the full potential of both classes of compounds, regarding biological applications, has been hampered by their challenging synthesis. Herein, recent developments in the synthesis of corroles and hexaphyrins are reviewed, highlighting their potential application in photodynamic therapy.
Collapse
Affiliation(s)
| | | | - Teresa M. V. D. Pinho e Melo
- Coimbra Chemistry Centre and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (S.M.M.L.); (M.P.)
| |
Collapse
|
15
|
Babu B, Soy RC, Mack J, Nyokong T. Non-aggregated lipophilic water-soluble tin porphyrins as photosensitizers for photodynamic therapy and photodynamic antimicrobial chemotherapy. NEW J CHEM 2020. [DOI: 10.1039/d0nj01564d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Readily-synthesized water-soluble Sn(iv) tetrapyridylporphyrin dyes have been prepared which exhibit enhanced properties for use as photosensitizer dyes in biomedical applications.
Collapse
Affiliation(s)
- Balaji Babu
- Institute for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Makhanda 6140
- South Africa
| | - Rodah C. Soy
- Institute for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Makhanda 6140
- South Africa
| | - John Mack
- Institute for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Makhanda 6140
- South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation
- Department of Chemistry
- Rhodes University
- Makhanda 6140
- South Africa
| |
Collapse
|