1
|
Cui Y, Liu Y, Gu D, Zhu H, Wang M, Dong M, Guo Y, Sun H, Hao J, Hao X. Three-Dimensional Cross-Linking Network Coating for the Flame Retardant of Bio-Based Polyamide 56 Fabric by Weak Bonds. Polymers (Basel) 2024; 16:1044. [PMID: 38674963 PMCID: PMC11054862 DOI: 10.3390/polym16081044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Weak bonds usually make macromolecules stronger; therefore, they are often used to enhance the mechanical strength of polymers. Not enough studies have been reported on the use of weak bonds in flame retardants. A water-soluble polyelectrolyte complex composed of polyethyleneimine (PEI), sodium tripolyphosphate (STPP) and melamine (MEL) was designed and utilized to treat bio-based polyamide 56 (PA56) by a simple three-step process. It was found that weak bonds cross-linked the three compounds to a 3D network structure with MEL on the surface of the coating under mild conditions. The thermal stability and flame retardancy of PA56 fabrics were improved by the controlled coating without losing their mechanical properties. After washing 50 times, PA56 still kept good flame retardancy. The cross-linking network structure of the flame retardant enhanced both the thermal stability and durability of the fabric. STPP acted as a catalyst for the breakage of the PA56 molecular chain, PEI facilitated the char formation and MEL released non-combustible gases. The synergistic effect of all compounds was exploited by using weak bonds. This simple method of developing structures with 3D cross-linking using weak bonds provides a new strategy for the preparation of low-cost and environmentally friendly flame retardants.
Collapse
Affiliation(s)
- Yunlong Cui
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Dongxu Gu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Hongyu Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Meihui Wang
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| | - Mengjie Dong
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| | - Yafei Guo
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| | - Hongyu Sun
- Binzhou Huafang Engineering Technology Research Institute, Binzhou 256617, China;
| | - Jianyuan Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Y.C.); (D.G.); (H.Z.); (J.H.)
| | - Xinmin Hao
- Systems Engineering Institute, Academy of Military Sciences, Chinese People’s Liberation Army, Beijing 100010, China; (M.W.); (M.D.); (Y.G.)
| |
Collapse
|
2
|
Wang X, Zeng W, Hu P, Liu S, Lin Y, He Z, Xin C, Kong X, Xu J. Effect of Additives on CO 2 Adsorption of Polyethylene Polyamine-Loaded MCM-41. Molecules 2024; 29:1006. [PMID: 38474518 DOI: 10.3390/molecules29051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Organic amine-modified mesoporous carriers are considered potential CO2 sorbents, in which the CO2 adsorption performance was limited by the agglomeration and volatility of liquid amines. In this study, four additives of ether compounds were separately coimpregnated with polyethylene polyamine (PEPA) into MCM-41 to prepare the composite chemisorbents for CO2 adsorption. The textural pore properties, surface functional groups and elemental contents of N for MCM-41 before and after functionalization were characterized; the effects of the type and amount of additives, adsorption temperature and influent velocity on CO2 adsorption were investigated; the amine efficiency was calculated; and the adsorption kinetics and regeneration for the optimized sorbent were studied. For 40 wt.% PEPA-loaded MCM-41, the CO2 adsorption capacity and amine efficiency at 60 °C were 1.34 mmol/g and 0.18 mol CO2/mol N, when the influent velocity of the simulated flue gas was 30 mL/min, which reached 1.81 mmol/g and 0.23 mol CO2/mol N after coimpregnating 10 wt.% of 2-propoxyethanol (1E). The maximum adsorption capacity of 2.16 mmol/g appeared when the influent velocity of the simulated flue gas was 20 mL/min. In addition, the additive of 1E improved the regeneration and kinetics of PEPA-loaded MCM-41, and the CO2 adsorption process showed multiple adsorption routes.
Collapse
Affiliation(s)
- Xia Wang
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Wulan Zeng
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Peidan Hu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Shengxin Liu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Yuechao Lin
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Zhaowen He
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Chunling Xin
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Xiangjun Kong
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Jinghan Xu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
3
|
Doan QKT, Chiang KY. Facile synthesis of polyethyleneimine-modified cellulose nanocrystal/silica hybrid aerogel for CO 2 adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28359-2. [PMID: 37422561 DOI: 10.1007/s11356-023-28359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Cellulose nanocrystal (CNC)/silica hybrid aerogel (CSA) was synthesized from CNC and sodium silicate hybridization using the one-step sol-gel method under atmospheric drying. At a weight ratio of CNC to silica of 1:1, the obtained CSA-1 had a highly porous network, a high specific area of 479 m2 g-1, and a CO2 adsorption capacity of 0.25 mmol g-1. Then, polyethyleneimine (PEI) was impregnated on CSA-1 to improve CO2 adsorption performance. The parameters governing CO2 adsorption performance on CSA-PEI, such as temperatures (70-120 °C) and PEI concentrations (40-60 wt%), were investigated systematically. The optimum adsorbent (CSA-PEI50) exhibited an excellent CO2 adsorption capacity of 2.35 mmol g-1 at 70 °C and a PEI concentration of 50 wt%. The adsorption mechanism of CSA-PEI50 was elucidated by analyzing many adsorption kinetic models. The CO2 adsorption behaviors of CSA-PEI at various temperatures and PEI concentrations had the goodness of fit with the Avrami kinetic model, which can correspond to the multiple adsorption mechanism. The Avrami model also showed fractional reaction orders in a range of 0.352-0.613, and the root mean square error is negligible. Moreover, the rate-limiting kinetic analysis showed that film diffusion and intraparticle diffusion resistance controlled the adsorption speed and dominated the subsequent adsorption stages, respectively. The CSA-PEI50 also exhibited excellent stability after ten adsorption-desorption cycles. This study illustrated that CSA-PEI was a potential adsorbent for CO2 capture from flue gas.
Collapse
Affiliation(s)
- Quyen Kim Thi Doan
- Graduate Institute of Environmental Engineering, National Central University, Zhongda Rd., Zhongli District, Taoyuan City, Taiwan
| | - Kung Yuh Chiang
- Graduate Institute of Environmental Engineering, National Central University, Zhongda Rd., Zhongli District, Taoyuan City, Taiwan.
| |
Collapse
|
4
|
Lin L, Meng Y, Ju T, Han S, Meng F, Li J, Du Y, Song M, Lan T, Jiang J. Characteristics, application and modeling of solid amine adsorbents for CO 2 capture: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116438. [PMID: 36240641 DOI: 10.1016/j.jenvman.2022.116438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/18/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In recent years, global warming has become an important topic of public concern. As one of the most promising carbon capture technologies, solid amine adsorbents have received a lot of attention because of their high adsorption capacity, excellent selectivity, and low energy cost, which is committed to sustainable development. The preparation methods and support materials can influence the thermal stability and adsorption capacity of solid amine adsorbents. As a supporting material, it needs to meet the requirements of high pore volume and abundant hydroxyl groups. Industrial and biomass waste are expected to be a novel and cheap raw material source, contributing both carbon dioxide capture and waste recycling. The applied range of solid amine adsorbents has been widened from flue gas to biogas and ambient air, which require different research focuses, including strengthening the selectivity of CO2 to CH4 or separating CO2 under the condition of the dilute concentration. Several kinetic or isotherm models have been adopted to describe the adsorption process of solid amine adsorbents, which select the pseudo-first order model, pseudo-second order model, and Langmuir isotherm model most commonly. Besides searching for novel materials from solid waste and widening the applicable gases, developing the dynamic adsorption and three-dimensional models can also be a promising direction to accelerate the development of this technology. The review has combed through the recent development and covered the shortages of previous review papers, expected to promote the industrial application of solid amine adsorbents.
Collapse
Affiliation(s)
- Li Lin
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tongyao Ju
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Siyu Han
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fanzhi Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jinglin Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yufeng Du
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Mengzhu Song
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tian Lan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|