1
|
Yamini S, Gunaseelan M, Gangadharan A, Lopez SA, Martirosyan KS, Girigoswami A, Roy B, Manonmani J, Jayaraman S. Upconversion, MRI imaging and optical trapping studies of silver nanoparticle decorated multifunctional NaGdF4:Yb,Er nanocomposite. NANOTECHNOLOGY 2021; 33. [PMID: 34753112 DOI: 10.1088/1361-6528/ac37e4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 05/16/2023]
Abstract
The multifunctional upconversion nanoparticles (UCNPs) are fascinating tool for biological applications. In the present work, photon upconverting NaGdF4:Yb,Er and Ag nanoparticles decorated NaGdF4:Yb,Er (NaGdF4:Yb,Er@Ag) nanoparticles were prepared using a simple polyol process. Rietveld refinement was performed for detailed crystal structural and phase fraction analysis. The morphology of the NaGdF4:Yb,Er@Ag was examined using high-resolution transmission electron microscope, which reveals silver nanoparticles of 8 nm in size were decorated over spherical shaped NaGdF4:Yb,Er nanoparticles with a mean particle size of 90 nm. The chemical compositions were confirmed by EDAX and inductively coupled plasma-optical emission spectrometry analyses. The upconversion luminescence (UCL) of NaGdF4:Yb,Er at 980 nm excitation showed an intense red emission. After incorporating the silver nanoparticles, the UCL intensity decreased due to weak scattering and surface plasmon resonance effect. The VSM magnetic measurement indicates both the UCNPs possess paramagnetic behaviour. The NaGdF4:Yb,Er@Ag showed computed tomography imaging. Magnetic resonance imaging study exhibited better T1 weighted relaxivity in the NaGdF4:Yb,Er than the commercial Gd-DOTA. For the first time, the optical trapping was successfully demonstrated for the upconversion NaGdF4:Yb,Er nanoparticle at near-infrared 980 nm light using an optical tweezer setup. The optically trapped UCNP possessing paramagnetic property exhibited a good optical trapping stiffness. The UCL of trapped single UCNP is recorded to explore the effect of the silver nanoparticles. The multifunctional properties for the NaGdF4:Yb,Er@Ag nanoparticle are demonstrated.
Collapse
Affiliation(s)
- S Yamini
- Department of Nuclear Physics, University of Madras, Chennai 600 025, Tamil Nadu, India
| | - M Gunaseelan
- Department of Nuclear Physics, University of Madras, Chennai 600 025, Tamil Nadu, India
- Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Ajithkumar Gangadharan
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Silverio A Lopez
- Department of Physics and Astronomy, The University of Texas Rio Grande Valley, 1201 W University Blvd, Brownsville, TX, 78520, United States of America
| | - Karen S Martirosyan
- Department of Physics and Astronomy, The University of Texas Rio Grande Valley, 1201 W University Blvd, Brownsville, TX, 78520, United States of America
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Academy of Research & Education, Kelambakkam, Tamil Nadu, India
| | - Basudev Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - J Manonmani
- Department of Chemistry, Quaid-E-Millath Government College for Women (Autonomous), Chennai 600 002, Tamil Nadu, India
| | | |
Collapse
|
2
|
Liu Y, Liu S, Peng H, Wang X, Zhang L, Zhu L, Zhang D, Guo J. Structural design and synthesis of new MOO3-x interlayer bi-functional nanomaterials for enhanced up-conversion luminescence properties. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Guan H, Li Y, Liu G. A novel green emitting NaGdF4:Dy3+,Ho3+ phosphor with tunable photoluminescence. NEW J CHEM 2020. [DOI: 10.1039/d0nj03030a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dy3+,Ho3+ co-doped β-NaGdF4 nanomaterials emitted different shades of green light, which varies from the light blue area towards the blue-green area and ultimately to the green area with the increase of Ho3+ ions.
Collapse
Affiliation(s)
- Hongxia Guan
- Changchun Institute of Technology
- Changchun 130012
- China
| | - Yunfei Li
- College of Humanities & Information
- Changchun University of Technology
- Changchun 130122
- China
| | - Guixia Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| |
Collapse
|