1
|
Tagami K, Yajima T. Development of Electrophilic Radical Perfluoroalkylation of Electron-Deficient Olefins. CHEM REC 2023; 23:e202300037. [PMID: 37058111 DOI: 10.1002/tcr.202300037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Fluorinated organic compounds have attracted significant attention over the past few decades owing to their unique properties and versatility. An established method for the synthesis of fluorinated organic compounds involves radical perfluoroalkylation reactions towards double bonds. In this radical pathway, electrophilic perfluoroalkyl radicals exhibit excellent reactivity towards electron-rich olefins. Therefore, several splendid perfluoroalkylation reactions of electron-rich olefins have been reported. However, there are only a few examples of reaction involving electron-deficient olefins because of their poor electronic compatibility with perfluoroalkyl radicals. This review focuses on the reports that challenge this long-standing issue. Radical perfluoroalkylation/bifunctionalization reactions of electron-deficient olefins are described according to the radical generation methods.
Collapse
Affiliation(s)
- Koto Tagami
- Department of Chemistry, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| |
Collapse
|
2
|
Liu D, Zhao Y, Patureau FW. NaI/PPh 3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles. Beilstein J Org Chem 2023; 19:57-65. [PMID: 36741816 PMCID: PMC9874234 DOI: 10.3762/bjoc.19.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
A practical NaI/PPh3-catalyzed decarboxylative radical cascade cyclization of N-arylacrylamides with redox-active esters is described, which is mediated by visible light irradiation. A wide range of substrates bearing different substituents and derived from ubiquitous carboxylic acids, including α-amino acids, were synthesized and examined under this very mild, efficient, and cost effective transition-metal-free synthetic method. These afforded various functionalized oxindoles featuring a C3 quaternary stereogenic center. Mechanistic experiments suggest a radical mechanism.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Yue Zhao
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
3
|
Wang H, Xie Y, Zhou Y, Cen N, Chen W. Catalyst-free, direct electrochemical trifluoromethylation/cyclization of N-arylacrylamides using TfNHNHBoc as a CF3 source. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Sun Z, Huang H, Wang Q, Huang C, Mao G, Deng GJ. Visible light-mediated radical-cascade addition/cyclization of arylacrylamides with aldehydes to form quaternary oxindoles at room temperature. Org Chem Front 2022. [DOI: 10.1039/d2qo00319h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The visible light-induced oxidative radical cascade coupling of N-arylacrylamides with aldehydes using bromide as the hydrogen atom transfer agent to synthesize functional oxindoles is described.
Collapse
Affiliation(s)
- Zhaozhao Sun
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Qiaolin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chunyan Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| |
Collapse
|
5
|
Su L, Sun H, Liu J, Wang C. Construction of Quaternary Carbon Center via NHC Catalysis Initiated by an Intermolecular Heck-Type Alkyl Radical Addition. Org Lett 2021; 23:4662-4666. [PMID: 34080869 DOI: 10.1021/acs.orglett.1c01400] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A quaternary carbon center containing an oxindole motif is constructed via NHC-catalyzed transition-metal and aldehyde-free intermolecular Heck-type alkyl radical addition initiated annulation. This redox-neutral protocol also features a simple procedure, broad substrate scope, good functional group tolerance and could be smoothly amplified to a gram scale. The mechanism study shows that the reaction possibly undergoes two folds of SET processes with an NHC radical cation intermediate involved.
Collapse
Affiliation(s)
- Lanjun Su
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Huan Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chengming Wang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| |
Collapse
|
6
|
Kong R, Fu T, Yang R, Chen D, Liang D, Dong Y, Li W, Wang B. 4‐Nitroanisole Facilitates Proton Reduction: Visible Light‐Induced Oxidative Aryltrifluoromethylation of Alkenes with Hydrogen Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202100304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rui Kong
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Tingfeng Fu
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ruihan Yang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Danna Chen
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ying Dong
- College of Chemistry Chemical Engineering and Materials Science Shandong Normal University Jinan Shandong Province 250014 P. R. China
| | - Weili Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Baoling Wang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| |
Collapse
|
7
|
Chen L, Ma P, Yang B, Zhao X, Huang X, Zhang J. Photocatalyst and additive-free visible light induced trifluoromethylation-arylation of N-arylacrylamides with Umemoto's reagent. Chem Commun (Camb) 2021; 57:1030-1033. [PMID: 33406204 DOI: 10.1039/d0cc07502g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A visible light induced highly convenient and practical method for the trifluoromethyl-arylation of N-arylmethacrylamides has been developed using Umemoto's reagent as the trifluoromethyl source. This user-friendly approach can proceed under visible light irradiation without any transition metal, photocatalyst and additive at room temperature. The strategy presented here provides access to trifluoromethylated oxindoles in good to excellent yields with a broad functional group tolerance. Preliminary mechanistic experiments indicated that the reaction process involves a homolytic cleavage of Umemoto's reagent irradiated by visible light.
Collapse
Affiliation(s)
- Lingling Chen
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Pengju Ma
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Bo Yang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Xu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuan Huang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Junmin Zhang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|