1
|
Das S, Pramanik S, Mukherjee S, Rajak C, Mukherjee B, Kuiri PK. Vibrational, optical, and photocatalytic properties of ZnO/layered carbon nanocomposite synthesized by ball milling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:395301. [PMID: 38885682 DOI: 10.1088/1361-648x/ad5922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
ZnO/layered carbon nanocomposites with varied sizes of ZnO nanoparticles (NPs) were synthesized by mechanical milling of mixture of ZnO NPs and carbon NPs. The NP size of ZnO was controlled with average particle sizes about 19.33, 21.87, 24.21, and 27.89 nm by varying the concentrations of carbon NPs viz 0, 2, 5, and 10 weight percent, respectively, in the mixture. Presence of carbon with ZnO in the form of composite also resulted in the enhanced shift of the band gap of ZnO due to the optical transitions in the impurity states or presence of carbon as compared to the ZnO size change alone. Additionally, the enhancement of absorbance in the visible region with an increase in carbon content was observed. Such an increase in absorbance can enhance the photocatalytic activity of ZnO NPs. Raman bands for ZnO NPs also were found to shift faster in the presence of layered carbon. The quenching of visible photoluminescence emission of ZnO NPs with an increase in concentration of carbon NPs in the composite indicated the phenomenon associated with transfer of electrons from ZnO to layered carbon helping the separation of photo-generated electrons and holes in ZnO and can lead to enhancement of the photocatalytic activity of ZnO NPs. In the photocatalytic studies, it was observed that the degradation of methylene blue (MB) dye was significantly enhanced by the increase of content of layered carbon in the nanocomposite. The sample containing 10% carbon showed the highest adsorption in dark conditions which was up to 60% of the starting strength and this was further enhanced to 88% in the presence of UV radiation. Enhanced adsorption of MB dye and the effective separation of electron-hole pairs due to charge transfer were believed to be the main causes behind such kind of improvement in the photocatalytic effects.
Collapse
Affiliation(s)
- Sandip Das
- Department of Physics, Sidho-Kanho-Birsha University, Purulia 723104, India
| | - Subhamay Pramanik
- School of Nano-Science and Technology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sumit Mukherjee
- Department of Physics, Sidho-Kanho-Birsha University, Purulia 723104, India
| | - Chinmoy Rajak
- Department of Physics, Sidho-Kanho-Birsha University, Purulia 723104, India
- Department of Physics, Nistarini College, Purulia 723101, West Bengal, India
| | | | - Probodh K Kuiri
- Department of Physics, Sidho-Kanho-Birsha University, Purulia 723104, India
| |
Collapse
|
2
|
Vinitha V, Preeyanghaa M, Anbarasu M, Neppolian B, Sivamurugan V. Chemical recycling of polyester textile wastes using silver-doped zinc oxide nanoparticles: an economical solution for circular economy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27567-0. [PMID: 37217818 DOI: 10.1007/s11356-023-27567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
The waste management of polyethylene terephthalate (PET)-derived polyester (PES) textile is a global issue, and material recovery through chemical recycling can restore a circular economy. In our investigation, microwave-induced catalytic aminolysis and glycolysis of PES textile wastes using Ag-doped ZnO nanoparticles have been proposed. Ag-doped ZnO is prepared by the sol-gel method and characterised by XRD, FT-IR, UV-Vis, SEM-EDX and TEM. The reaction parameters such as PET-to-catalyst ratio, microwave power and irradiation time, temperature and catalyst recycling have been optimised. The catalyst was found to be more stable and could be recycled up to six times without losing its activity. Both the aminolysis and glycolysis of PES showed 100% conversion and afforded of bis (2-hydroxy ethylene) terephthalamide (BHETA) and bis (2-hydroxy ethylene) terephthalate (BHET), respectively. The depolymerisation of PES wastes using Ag-doped ZnO afforded BHETA and BHET for about 95 and 90%, respectively. The monomers BHET and BHETA confirmed by FT-IR, 1H NMR and mass spectroscopy. According to the findings, 2 mol% Ag-doped ZnO has higher catalytic activity.
Collapse
Affiliation(s)
- Viswanathan Vinitha
- PG and Research Department of Chemistry, Pachaiyappa's College, Chennai, 600 030, India
| | - Mani Preeyanghaa
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Murugan Anbarasu
- PG and Research Department of Chemistry, Pachaiyappa's College, Chennai, 600 030, India
| | - Bernaurdshaw Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Vajiravelu Sivamurugan
- PG and Research Department of Chemistry, Pachaiyappa's College, Chennai, 600 030, India.
| |
Collapse
|
3
|
Le Nhat Trang N, Thi Nguyet Nga D, Tufa LT, Tran VT, Hung TT, Ngoc Phan V, Pham TN, Hoang VT, Le AT. Unveiling the effect of crystallinity and particle size of biogenic Ag/ZnO nanocomposites on the electrochemical sensing performance of carbaryl detection in agricultural products. RSC Adv 2023; 13:8753-8764. [PMID: 36936823 PMCID: PMC10016934 DOI: 10.1039/d3ra00399j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
In this study, bio-Ag/ZnO NCs were synthesized via a microwave-assisted biogenic electrochemical method using mangosteen (Garcinia mangostana) peel extract as a biogenic reducing agent for the reduction of Zn2+ and Ag+ ions to form hybrid nanoparticles. The as-synthesized NC samples at three different microwave irradiation temperatures (Z 70, Z 80, Z 90) exhibited a remarkable difference in size and crystallinity that directly impacted their electrocatalytic behaviors as well as electrochemical sensing performance. The obtained results indicate that the Z 90 sample showed the highest electrochemical performance among the investigated samples, which is attributed to the improved particle size distribution and crystal microstructure that enhanced charge transfer and the electroactive surface area. Under the optimal conditions for carbaryl pesticide detection, the proposed nanosensor exhibited a high electrochemical sensitivity of up to 0.303 μA μM-1 cm-2 with a detection limit of LOD ∼0.27 μM for carbaryl pesticide detection in a linear range of 0.25-100 μM. Overall, the present work suggests that bio-Ag/ZnO NCs are a potential candidate for the development of a high-performance electrochemical-based non-enzymatic nanosensor with rapid monitoring, cost-effectiveness, and eco-friendly to detect carbaryl pesticide residues in agricultural products.
Collapse
Affiliation(s)
- Nguyen Le Nhat Trang
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Dao Thi Nguyet Nga
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Lemma Teshome Tufa
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University Daejeon 34134 Republic of Korea
| | - Van Tan Tran
- Faculty of Biotechnology, Chemical and Environmental Engineering (BCEE), Phenikaa University Hanoi 12116 Viet Nam
| | - Thuan-Tran Hung
- Center for Advanced Materials and Environmental Technology, National Center for Technological Progress Hanoi 12116 Viet Nam
| | - Vu Ngoc Phan
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Biotechnology, Chemical and Environmental Engineering (BCEE), Phenikaa University Hanoi 12116 Viet Nam
| | - Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Van-Tuan Hoang
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering (MSE), Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
4
|
Bhosale A, Kadam J, Gade T, Sonawane K, Garadkar K. Efficient photodegradation of methyl orange and bactericidal activity of Ag doped ZnO nanoparticles. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Abebe B, Murthy HCA. Insights into ZnO-based doped porous nanocrystal frameworks. RSC Adv 2022; 12:5816-5833. [PMID: 35424565 PMCID: PMC8981561 DOI: 10.1039/d1ra09152b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/01/2022] [Indexed: 01/22/2023] Open
Abstract
Colloidal nanocrystals play a vital role in several applications. The doping of cations in the nanocrystal matrix enhances the optical, electrical, and magnetic properties. The number and well-defined distribution of the dopant are crucial to protect the nanocrystal from clustering. The XRD, XPS, and XAS instruments reveal the change in the lattice parameters, chemical states, and local coordination environment information. In addition of detecting the position and distribution of the dopant, the 4D-STEM detector mode gathers all types of real-space atomic-resolution images by collecting all diffraction datasets from each electron probe with high-speed and efficient detection. Dopant-host ligand type, reactions conditions, and reaction time optimization during synthesis are critical for the host and dopant reactivity balance. Pearson's hard/soft acids/bases theory would be a base for balancing the solubility of the dopant-host in the given solvents/surfactant. In addition, tuning the colloidal nanocrystals to secondary structures, which enhances the mass-/ions transport, can contribute a combination of properties that do not exist in the original constituents.
Collapse
Affiliation(s)
- Buzuayehu Abebe
- Adama Science and Technology University, Department of Applied Chemistry 1888 Adama Ethiopia
| | - H C Ananda Murthy
- Adama Science and Technology University, Department of Applied Chemistry 1888 Adama Ethiopia
| |
Collapse
|
6
|
Rahman MM, Alam MM, Asiri AM, Uddin J. Assessment of Melamine in Different Water Samples with ZnO-doped Co 3 O 4 Nanoparticles on a Glassy Carbon Electrode by Differential Pulse Voltammetry. Chem Asian J 2021; 16:1820-1831. [PMID: 34014032 DOI: 10.1002/asia.202100370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Indexed: 11/07/2022]
Abstract
In this investigation, a melamine electrochemical sensor has been developed by using wet-chemically synthesized low-dimensional aggregated nanoparticles (NPs) of ZnO-doped Co3 O4 as sensing substrate that were decorated onto flat glassy carbon electrode (GCE). The characterization of NPs such as UV-Vis, FTIR, XRD, XPS, EDS, and FESEM was done for detailed investigations in optical, functional, structural, elemental, and morphological analyses. The ZnO-doped Co3 O4 NPs decorated GCE was used as a sensing probe to analyze the target chemical melamine in a phosphate buffer at pH 5.7 by applying differential pulse voltammetry (DPV). It exhibited good performances in terms of sensor analytical parameters such as large linear dynamic range (LDR; 0.15-1.35 mM) of melamine detection, high sensitivity (80.6 μA mM-1 cm-2 ), low limit of detection (LOD; 0.118±0.005 mM), low limit of quantification (LOQ; 0.393 mM), and fast response time (30 s). Besides this, the good reproducibility (in several hours) and repeatability were investigated under identical conditions. Moreover, it was implemented to measure the long-time stability, electron mobility, less charge-transfer resistance, and analyzed diffusion-controlled process for the oxidation reaction of the NPs assembled working GCE electrode, which showed outstanding chemical sensor performances. For validation, real environmental samples were collected from various water sources and investigated successfully with regard to the reliability of the selective melamine detection with prepared NPs coated sensor probe. Therefore, this approach might be introduced as an alternative route in the sensor technology to detect selectively unsafe chemicals by an electrochemical method with nanostructure-doped materials for the safety of environmental, ecological, healthcare fields in a broad scale.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - M M Alam
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, MD 21216, USA
| |
Collapse
|
7
|
Aqlan FM, Alam M, Al-Bogami AS, Saleh TS, Wani MY, Al-Farga A, Asiri AM, Karim MR, Ahmed J, Fazal M, Rahman MM. Efficient electro-chemical sensor for sensitive Cd2+detection based on novel in-situ synthesized hydrazonoyl bromide (HB). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Liu H, Hu D, Chen X, Ma W. Surface engineering of nanoparticles for highly efficient
UV
‐shielding composites. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huaqing Liu
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Dechao Hu
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Xiaojun Chen
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Wenshi Ma
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|
9
|
Zhang H, Liang Z, Zhang J, Wang WP, Zhang H, Lu Q. Zinc oxide nanoparticle synthesized from Euphorbia fischeriana root inhibits the cancer cell growth through modulation of apoptotic signaling pathways in lung cancer cells. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Abou Hammad AB, Elzwawy A, Mansour AM, Alam MM, Asiri AM, Karim MR, Rahman MM, El Nahrawy AM. Detection of 3,4-diaminotoluene based on Sr 0.3Pb 0.7TiO 3/CoFe 2O 4 core/shell nanocomposite via an electrochemical approach. NEW J CHEM 2020. [DOI: 10.1039/d0nj01074j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We reported a scalable sol–gel method for the preparation of Sr0.3Pb0.7TiO3/CoFe2O4 core–shell magnetic nanocomposite with a finely controlled shell and evaluated its efficiency as an electrochemical sensor for the selective detection of 3,4-diaminotoluene.
Collapse
Affiliation(s)
- Ali B. Abou Hammad
- Solid State Physics Department
- Physics research division
- National Research Centre
- Cairo
- Egypt
| | - Amir Elzwawy
- Ceramics Department
- National Research Centre
- Cairo
- Egypt
| | - A. M. Mansour
- Solid State Physics Department
- Physics research division
- National Research Centre
- Cairo
- Egypt
| | - M. M. Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammad Razaul Karim
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Amany M. El Nahrawy
- Solid State Physics Department
- Physics research division
- National Research Centre
- Cairo
- Egypt
| |
Collapse
|
11
|
Rahman MM, Wahid A, Asiri AM, Awual MR, Karim MR. One-step facile synthesis of SnO2@Nd2O3 nanocomposites for selective amidol detection in aqueous phase. NEW J CHEM 2020. [DOI: 10.1039/d0nj00421a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this approach, amidol, a toxic organic chemical, is used as a staining developer electrochemically detected by using binary SnO2@Nd2O3 nanocomposites (NCs) by deposition onto a flat glassy carbon electrode (GCE).
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Abdul Wahid
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Md. Rabiul Awual
- Center of Excellence for Advanced Materials Research
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammad Razaul Karim
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|