1
|
Dai W, Yu S, Xu W, Kong C, Liu Z, Yin H, He C, Liu JJ, Cheng F. Energy transfer in metal-exchange binuclear complexes covalently linked by asymmetric ligands. Dalton Trans 2023; 52:16993-17004. [PMID: 37933477 DOI: 10.1039/d3dt03307d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Nitrogen complexation with π-conjugated ligands is an effective strategy for synthesizing luminescent molecules. The asymmetric bridging ligands L (L1 and L2) have been designed. The terminal chelating sites of the L1 and L2 bridging ligands consisted of 2,2'-bipyridine (bpy) and 1,10-phenanthroline moieties (where L = L1 and L2; L1 = 2-(3-((4-([2,2'-bipyridin]-6-yl)benzyl)oxy)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline and L2 = 2-(3-((4-(6-phenyl-[2,2'-bipyridin]-4-yl)benzyl)oxy)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline). The full use of the synthetic strategy of the "complexes as ligands and complexes as metals" was expected to successfully design and synthesize a series of conjugated metal-exchange complexes linked by the asymmetric bridging ligands L1 and L2. These compounds included monometallic complexes Ru(L) and (L)Ru (C1, C2, C7, and C8), homometallic complexes Ru(L)Ru (C3 and C4), and heterometallic complexes Os(L)Ru and Ru(L)Os (C5, C6, C9, and C10) with Ru- or Os-based units. C3-C10 complexes exhibited various degrees of octahedral distortion around the Ru(II) or Os(II) center, which was consistent with the optimized geometry of the coordination complexes based on density functional theory calculation. These complexes exhibited intense spin-allowed ligand-centered transitions with high absorbance at around 288 nm upon absorbing visible light. Notably, all complexes exhibited spin-allowed metal-to-ligand charge transfer absorption of the Ru-based units in the 440-450 nm range. In addition, the heterometallic C5, C6, C9, and C10 complexes showed absorption of the Os-based units in the range of 565-583 nm. The intramolecular energy transfer of C3 and C5 was briefly discussed by comparing the emission intensity of monometallic C1 and C2 to that of binuclear complexes C3 and C5, respectively. The results indicated that the intramolecular energy transfer of the Ru(II)/Os(II) polypyridine complexes proceeded from the Ru(II)- to the Os(II)-based units in the heterometallic C5 and C6 complexes.
Collapse
Affiliation(s)
- Weijun Dai
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Shiwen Yu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Wen Xu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Ci Kong
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Zining Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Hongju Yin
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Chixian He
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Feixiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
2
|
Nurnabi M, Gurusamy S, Wu JY, Lee CC, Sathiyendiran M, Huang SM, Chang CH, Chao I, Lee GH, Peng SM, Sathish V, Thanasekaran P, Lu KL. Aggregation-induced emission enhancement (AIEE) of tetrarhenium(I) metallacycles and their application as luminescent sensors for nitroaromatics and antibiotics. Dalton Trans 2023; 52:1939-1949. [PMID: 36691828 DOI: 10.1039/d2dt03408e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The self-assembly of tetrarhenium metallacycles [{Re(CO)3}2(μ-dhaq)(μ-N-N)]2 (3a, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene; 3b, N-N = 1,3-bis(1-octylbenzimidazol-2-yl)benzene), (H2-dhaq = 1,4-dihydroxy-9,10-anthraquinone) and [{Re(CO)3}2(μ-thaq)(μ-N-N)]2 (4, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene), (H2-thaq = 1,2,4-trihydroxy-9,10-anthraquinone) under solvothermal conditions is described. The metallacycles 3a,b and 4 underwent aggregation-induced emission enhancement (AIEE) in THF upon the incremental addition of water. TEM images revealed that metallacycle 3a in a 60% aqueous THF solution formed rectangular aggregates with a wide size distribution, while a 90% aqueous THF solution resulted in the formation of a mixture of nanorods and amorphous aggregates due to rapid and abrupt aggregation. UV-vis and emission spectral profiles supported the formation of nanoaggregates of metallacycles 3a,b and 4 upon the gradual addition of water to a THF solution containing metallacycles. Further studies indicated that these nanoaggregates were excellent probes for the sensitive and selective detection of nitro group containing picric acid (PA) derivatives as well as antibiotics.
Collapse
Affiliation(s)
| | - Shunmugasundaram Gurusamy
- PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Chung-Chou Lee
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | - Che-Hao Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Ito Chao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Veerasamy Sathish
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam - 638 401, India
| | | | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan. .,Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
4
|
Xiao L, Zhang D, Zhang J, Pu S. A iridium(III) complex-based ‘turn-on’ fluorescent probe with two recognition site for rapid detection of thiophenol and its application in water samples and human serum. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|