1
|
Wang R, Liu H, Zhang Y, Sun K, Bao W. Integrated Photovoltaic Charging and Energy Storage Systems: Mechanism, Optimization, and Future. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203014. [PMID: 35780491 DOI: 10.1002/smll.202203014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
As an emerging solar energy utilization technology, solar redox batteries (SPRBs) combine the superior advantages of photoelectrochemical (PEC) devices and redox batteries and are considered as alternative candidates for large-scale solar energy capture, conversion, and storage. In this review, a systematic summary from three aspects, including: dye sensitizers, PEC properties, and photoelectronic integrated systems, based on the characteristics of rechargeable batteries and the advantages of photovoltaic technology, is presented. The matching problem of high-performance dye sensitizers, strategies to improve the performance of photoelectrode PEC, and the working mechanism and structure design of multienergy photoelectronic integrated devices are mainly introduced and analyzed. In particular, the devices and improvement strategies of high-performance electrode materials are analyzed from the perspective of different photoelectronic integrated devices (liquid-based and solid-state-based). Finally, future perspectives are provided for further improving the performance of SPRBs. This work will open up new prospects for the development of high-efficiency photoelectronic integrated batteries.
Collapse
Affiliation(s)
- Ronghao Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Hongmin Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Yuhao Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Weizhai Bao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
3
|
Ramalingam K, Wei Q, Chen F, Shen K, Liang M, Dai J, Hou X, Ru Q, Babu G, He Q, Ajayan PM. Achieving High-Quality Freshwater from a Self-Sustainable Integrated Solar Redox-Flow Desalination Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100490. [PMID: 34160139 DOI: 10.1002/smll.202100490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Solar-assisted electrochemical desalination has offered a new energy-water nexus technology for sustainable development in recent studies. However, only a few reports have demonstrated insufficient photocurrent, a low salt removal rate, and poor stability. In this study, a high-quality freshwater level of 5-10 ppm (from an initial feed of 10 000 ppm), an enhanced salt removal rate (217.8 µg cm-2 min-1 of NaCl), and improved cycling and long-term stability are achieved by integrating dye-sensitized solar cells (DSSCs) and redox-flow desalination (RFD) under light irradiation without additional electrical energy consumption. The DSSC redox electrolyte (I- /I3- ) is circulated between the photoanode (N719/TiO2 ) and intermediate electrode (graphite paper). Two DSSCs in parallel or series connections are directly coupled to the RFD device. Overall, this hybrid system can be used to boost photo electrochemical desalination technology. The energy-water nexus technology will open a new route for dual-role devices with photodesalination functions without energy consumption and solar-to-electricity generation.
Collapse
Affiliation(s)
- Karthick Ramalingam
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Qiang Wei
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Fuming Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Kaixiang Shen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Mengjun Liang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Jinhong Dai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Xianhua Hou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Qiang Ru
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Ganguli Babu
- Department of Materials Science and NanoEngineering, Department Chemical and Biomolecular Engineering, Department of Chemistry, Rice University, Houston, Texas, 77005, USA
| | - Qinyu He
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou, 510006, China
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Department Chemical and Biomolecular Engineering, Department of Chemistry, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
4
|
Li M, Deng H, Zhang Y, Hou C. A Small Hybrid Power System of Photovoltaic Cell and Sodium Borohydride Hydrolysis-Based Fuel Cell. MICROMACHINES 2021; 12:278. [PMID: 33800058 PMCID: PMC8001333 DOI: 10.3390/mi12030278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
Although the hybrid power system that combines a photovoltaic cell and a lithium-ion battery is increasingly mature and practical, long-lifetime auxiliary power will be still needed in severe weather conditions. A small-volume hydrogen-oxygen fuel cell system based on the hydrolysis of NaBH4 is designed. The fuel cell system contains a tiny hydrogen generator, a hydrogen cleaner, and a small fuel cell stack consisting of three units in series. The relationship between the amount of catalyst and output performance is discussed. The long-time discharging results indicate that the fuel cell system has high power capacity. The compact design allows the fuel cell system to integrate the structure with a photovoltaic cell and lithium-ion cell and forms a hybrid power system with a small package. The power management circuit for these power sources without logic devices is designed and tested. The control strategy selects the photovoltaic-battery subsystem as the primary power source, and the fuel cell subsystem works as the backup power source to handle the circumstance when the energy stored in the battery is exhausted. The test results show that the power management system could switch the power supply automatically and timely under various emergency conditions, and the output voltage remains stable all the time.
Collapse
Affiliation(s)
- Mingxue Li
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China; (M.L.); (Y.Z.); (C.H.)
| | - Huichao Deng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yufeng Zhang
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China; (M.L.); (Y.Z.); (C.H.)
| | - Chenjun Hou
- MEMS Center, Harbin Institute of Technology, Harbin 150001, China; (M.L.); (Y.Z.); (C.H.)
| |
Collapse
|