1
|
Wang T, Xue L, Di C, Ma P, Feng X, Chen P, Du W, Liu BF. Sensitive colorimetric detection of heparin using reverse modulation of peroxidase- and oxidase-mimetic activities in Fe 3O 4@PDA@MnO 2 nanocomposites. Talanta 2025; 281:126847. [PMID: 39276576 DOI: 10.1016/j.talanta.2024.126847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Heparin, a widely studied glycosaminoglycan, plays crucial roles in the regulation of various physiological and pathological processes. Therefore, it's important to develop highly selective and sensitive methods for convenient monitoring of heparin levels in biological systems. We report the design and synthesis of Fe3O4@PDA@MnO2 nanoparticles (FPM-NPs), which exhibit dual enzymatic activities, enabling quantitative detection of heparin. The FPM-NPs feature a unique tri-layer spherical shell structure, possessing both peroxidase-like and oxidase-like activities, and catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence or absence of H2O2. Remarkably, upon co-incubated with heparin, the oxidase activity of FPM-NPs decreases, while the peroxidase activity increases. By leveraging these dual enzymatic properties of FPM-NPs, a highly sensitive and specific colorimetric detection of heparin is achieved, with a detection limit reaching 6.51 nM and a good linear response to quantify heparin ranging 10-800 nM. Additionally, the developed FPM-NPs are successfully applied to measure heparin in fetal bovine serum samples. We also extend this detection method to a paper-based chip, enabling portable detection of heparin through grayscale analysis of mobile phone photographs. The multi-nanozyme-based heparin detection approach provides a new perspective for future research on expanding the application of nanocomposite materials in biomedical detection and analysis.
Collapse
Affiliation(s)
- Tengteng Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lian Xue
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Di
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Zhang W, Sun X, Liu H, Shang L, Ma R, Li X, Jia L, He S, Li C, Wang H. Self-Powered Photoelectrochemistry Biosensor for Ascorbic Acid Determination in Beverage Samples Based on Perylene Material. Molecules 2024; 29:5254. [PMID: 39598645 PMCID: PMC11596541 DOI: 10.3390/molecules29225254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Ascorbic acid plays an important role in the synthesis and metabolism of the human body. However, it cannot be synthesized by the human body and needs to be supplemented from exogenous food intake. Ascorbic acid is easily degraded during storage and heating, often causing its content in food to change. It is important to develop a sensitive and accurate photoelectrochemistry (PEC) biosensor for detecting ascorbic acid. The shortage of PEC materials with long illumination wavelengths and low bias voltages impedes the development of ascorbic acid biosensors. Herein, a 3,4,9,10-perylenetetracarboxylic dianhydride (PDA) self-assembly rod material was firstly reported to show significant photocurrent increases to ascorbic acid at 630 nm illumination and 0 V vs. Ag/AgCl. Moreover, the PDA self-assembly rod material was used as a PEC platform to detect ascorbic acid. This self-powered PEC biosensor exhibited a linear response for ascorbic acid from 5 μM·L-1 to 400 μM·L-1; the limit of detection was calculated to be 4.1 μM·L-1. Compared with other ascorbic acid biosensors, the proposed self-powered PEC biosensor shows a relatively wide linear range. In addition, the proposed self-powered PEC biosensor exhibits good practicability in beverage samples.
Collapse
Affiliation(s)
- Wei Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Xinyang Sun
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Hong Liu
- Dongying Ecological Environment Agency, Dongying 257000, China
| | - Lei Shang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Rongna Ma
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Xiaojian Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Liping Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (W.Z.); (X.S.); (H.W.)
| |
Collapse
|
3
|
Pham TH, Ngo QTT, Ngo XD, Tufa LT, Nguyen HQ, Tran VT, Chu XQ, Hoang VT, Le AT. Unveiling the role of heterophase nanostructure in MnO 2-based colorimetric sensors for ascorbic acid detection. Mikrochim Acta 2024; 191:520. [PMID: 39110248 DOI: 10.1007/s00604-024-06598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024]
Abstract
Nanozymes based on manganese oxide (MnO2) are demonstrated to be promising probes in colorimetric sensing applications. In this study, the r-MnO2/β-MnO2 heterophase nanostructure was simply prepared by a calcination process with controllable temperature. The characterization of the nanostructured material was confirmed by SEM, UV-vis spectroscopy, Raman, TGA-DSC, and XRD analysis. The r-MnO2/β-MnO2 exhibits a remarkably good catalytic activity in the oxidation process of 3,3',5,5'-tetramethylbenzidine (TMB) compared with the r-MnO2 or Mn2O3 nanostructure owing to its heterophase junctions. The enhanced performance of the colorimetric sensor for ascorbic acid (AA) detection was investigated using the r-MnO2/β-MnO2 heterophase nanostructure as probe. The r-MnO2/β-MnO2 material enhanced the monitoring of AA in the wide linear range from 1 µM to 50 μM with a limit of detection of 0.84 µM. This work presents a promising and straightforward approach for the construction of MnO2-based colorimetric sensor and their practical application in plant growth monitoring.
Collapse
Affiliation(s)
- Thi-Hien Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
| | - Quynh-Trang Thi Ngo
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
| | - Xuan-Dinh Ngo
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
| | - Lemma Teshome Tufa
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Applied Chemistry, Adama Science and Technology University, P.O.Box, 1888, Adama, Ethiopia
| | - Huu-Quang Nguyen
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Van Tan Tran
- Faculty of Biotechnology, Chemical and Environmental Engineering (BCEE), Phenikaa University, Hanoi, 12116, Vietnam.
| | - Xuan-Quang Chu
- Center for Advanced Materials and Environmental Technology, National Center for Technological Progress, Hanoi, 12116, Vietnam
| | - Van-Tuan Hoang
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam.
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam.
| |
Collapse
|
4
|
Liu Y, Sun G, Ma P, Song D. Combining fluorescent quantum dots with transition metal oxide shell as core-shell nanocomposite for turn-on sensing of ascorbic acid. Talanta 2024; 271:125687. [PMID: 38271843 DOI: 10.1016/j.talanta.2024.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Ascorbic acid (AA) is an essential vitamin in humans, and numerous AA detection studies have been conducted. Most quantum dots (QDs)-based approaches depend on redox reactions involving AA, and they require the introduction of an intermediate (e.g., metal ions, OPD, TMB) or the assembly of fluorescent substances with nanosheets (such as MnO2) that can be degraded by AA. These methods are complex, unstable, and are susceptible to interferences. To address these problems, a core-shell fluorescence probe was developed for turn-on sensing of AA. The transition metal oxide shell FeOOH was generated around the surface of CuInZnS QDs to quench the fluorescence. In the presence of AA, the FeOOH shell was decomposed into Fe2+ and the fluorescence of QDs was recovered. Using a physical shell, the obtained nanocomposite realized direct AA detection, avoiding the effects of interfering substances caused by QDs exposure. Moreover, our probe showed great potential in point-of-care tests and was readily adapted for use as a smartphone-assisted paper sensor.
Collapse
Affiliation(s)
- Yibing Liu
- School of Chemistry and Life Science, Changchun University of Technology, Yanan Street 2055, Changchun, 130012, China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, Yanan Street 2055, Changchun, 130012, China; Advanced Institute of Materials Science, Changchun University of Technology, Yanan Street 2055, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
5
|
Gautam N, Verma R, Ram R, Singh J, Sarkar A. Development of a biodegradable microfluidic paper-based device for blood-plasma separation integrated with non-enzymatic electrochemical detection of ascorbic acid. Talanta 2024; 266:125019. [PMID: 37544255 DOI: 10.1016/j.talanta.2023.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
In the present article, we developed an electrochemical microfluidic paper-based device (EμPAD) for the non-enzymatic detection of Ascorbic Acid (AA) concentration in plasma using whole human blood. We combined LF1 blood plasma separation membrane and Whatman grade 1 filter paper to separate plasma from whole blood through wax printing. A screen-printed electrode (SPE) was modified with spherical-shaped MgFe2O4 nanomaterial (n-MgF) to improve the catalytic properties of SPE. The n-MgF was prepared via hydrothermal method, and its material phase and morphology were confirmed via XRD, FTIR, TEM, SEM, and AFM analysis. The fabricated n-MgF/SPE/EμPAD exhibited detection of AA ranging from 0 to 80 μM. The obtained value of the detection limit, limit of quantification, sensitivity, and response time are 2.44 μM, 8.135 μM, 5.71 × 10-3 mA μM-1 cm-2, and 10 s, respectively. Our developed n-MgF/SPE/EμPAD shows marginal interference with the common analytes present in plasma, such as uric acid, glutamic acid, glucose, urea, lactic acid, and their mixtures. Overall, our low-cost, portable device with its user-friendly design and efficient plasma separation capability offers a practical and effective solution for estimating AA concentration from whole human blood in a single step.
Collapse
Affiliation(s)
- Neha Gautam
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rahul Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rishi Ram
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arnab Sarkar
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
6
|
Ghosh R, Debnath S, Bhattacharya A, Chatterjee PB. Affinity Studies of Hemicyanine Derived Water Soluble Colorimetric Probes with Reactive Oxygen/Nitrogen/Sulfur Species. Chembiochem 2023; 24:e202200541. [PMID: 36598026 DOI: 10.1002/cbic.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Peroxynitrite (ONOO- ) is an essential endogenous reactive oxygen species (ROS) generated in mitochondria under various pathological and physiological conditions. An increase in its level in mitochondria is related to numerous diseases. Herein, we report a series of hemicyanine-derived water-soluble colorimetric probes (1-4) and the reactivity of which was studied with various reactive oxygen, nitrogen, and sulfur species. Probes 1-4 are formed by conjugating 1,2,3,3-tetramethyl-3H-indolium iodide and 4-hydroxybenzaldehyde or its derivatives through an alkene linkage formed by the Knoevenagel reaction. Oxidative cleavage of the electron-rich double bond of the conjugated hemicyanine dye revealed a discerning affinity of probe 3 towards peroxynitrite among all reactive oxygen species. The rapid change in color of 3 provides a sensitive and selective method for detecting peroxynitrite with a low detection limit of 180 nM. Notably, the water solubility of the probe displays excellent performance for the selective detection of peroxynitrite among ROS and reactive nitrogen (RNS)/sulfur species (RSS). UV-vis, 1 H NMR, and 13 C NMR spectroscopic data and results from theoretical calculations provide further information on the interaction of peroxynitrite with probe 3.
Collapse
Affiliation(s)
- Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arnab Bhattacharya
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Zhao H, Zhang Z, Han Y, Yang W, Tang W, Yue T, Li Z. Visual detection of vitamin C in fruits and vegetables using UiO-66 loaded Ce-MnO 2 mimetic oxidase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121900. [PMID: 36170775 DOI: 10.1016/j.saa.2022.121900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
A nanocomposite (UiO-66/Ce-MnO2) was fabricated by combining UiO-66 with cerium-doped manganese dioxide (Ce-MnO2) for colorimetric detecting vitamin C (Vc). Compared with traditional artificial enzymes, the as-synthesized UiO-66/Ce-MnO2 were simple to prepare and did not require the participation of other active substances. The doping of cerium increased the oxygen vacancies and the UiO-66 as a carrier improved the dispersibility. The formation of superoxide anion (O2-) and the inside Ce4+/Ce3+ and Mn4+/Mn3+ redox couples of UiO-66/Ce-MnO2 endowed UiO-66/Ce-MnO2 with a high catalytic capability, which could catalytically oxidize 3, 3', 5, 5'-tetramethylbenzidine (TMB) into oxidation state TMB (oxTMB) without H2O2, accompanying with color change and a prominent peak at 652 nm in UV-vis spectra. Based on the inhibitory effects of Vc on catalytic oxidation of TMB, detection of Vc can be achieved, exhibiting a linear relationship in the concentration of 1.13-17.01 μmol L-1 with a low detection limit of 65.82 nmol L-1. This system can also be detected by smartphone, the linear detection range is 12.47-22.67 μmol L-1. Vc contents in fruits and vegetables detected by the sensor were in good agreement with the 2, 4-Dinitrophenylhydrazine colorimetry method (P > 0.05), indicating a reliable sensor for Vc detection.
Collapse
Affiliation(s)
- Haiping Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziyi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixia Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenzhi Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Xu R, Xu K, Du Y, Li J, Ren X, Ma H, Wu D, Li Y, Wei Q. Dual Direct Z-Scheme Heterojunction with Growing Photoactive Property for Sensitive Photoelectrochemical and Colorimetric Bioanalysis. Anal Chem 2022; 94:9888-9893. [PMID: 35762977 DOI: 10.1021/acs.analchem.2c01874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A dual direct Z-scheme heterojunction photoactive material of CoTiO3/g-C3N4/Bi2O3 was designed based on calcination and in situ illumination-assisted process for sensitivity bioproteins detection which combined with MnO2 nanoflowers to achieve signal quenching strategy. The complex consists of two direct Z-scheme heterojunctions of g-C3N4 and two photoactive materials CoTiO3 and Bi2O3. This great structure could augment the migration of photogenerated electrons obviously, which boost the photocurrent greatly and prefer the photoelectric application of perovskite oxide. To improve sensitivity, the nanoflower like MnO2 with oxidation performance is introduced into the system and used as a label fixed on secondary antibody to oxidize electron donor (AA) to achieve an enlarged signal quenching value. Interestingly, MnO2 also showed an effective oxidation activity for TMB oxidation, leading to a chromogenic reaction. With the change of antigen concentration, the color of the test electrolyte also changes. Herein, the designed smart photoelectrochemical sensor shows a wide detection range (neuron specific enolase as an example) from 0.00005 to 200 ng/mL with a detection limit as low as 28 fg/mL. And the colorimetric assay for target detection owns a liner range from 0.1 to 20 ng/mL accompany with a detection limit of 0.05 ng/mL. These two designed sensing modes offer a new strategy for signal amplification of perovskite oxide and the possibility of real-time detection.
Collapse
Affiliation(s)
- Rui Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Kun Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jingshuai Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
9
|
Chen S, Li Z, Xue R, Huang Z, Jia Q. Confining copper nanoclusters in three dimensional mesoporous silica particles: Fabrication of an enhanced emission platform for “turn off-on” detection of acid phosphatase activity. Anal Chim Acta 2022; 1192:339387. [DOI: 10.1016/j.aca.2021.339387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
|
10
|
Sha H, Yan B. Dye-functionalized metal-organic frameworks with the uniform dispersion of MnO 2 nanosheets for visualized fluorescence detection of alanine aminotransferase. NANOSCALE 2021; 13:20205-20212. [PMID: 34850792 DOI: 10.1039/d1nr05376k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The wide applications of metal-organic framework (MOF) luminescent materials in the field of optics have attracted the general attention of researchers. Therefore, the development of simple and multifunctional MOF light-emitting platforms have become a research hotspot. The composites (MnO2@ZIF-8-luminol) were prepared by an in situ synthesis method and room-temperature covalent reaction. The composites and o-phenylenediamine (OPD) constitute a dual emission sensor for detecting alanine aminotransferase (ALT). OPD can be oxidized by MnO2 to 2,3-diaminophenazine (DAP) with yellow fluorescence emission, which inhibits the blue emission of luminol through fluorescence resonance energy transfer (FRET). The presence of tiopronin (TP) will destroy the FRET process, extinguishing the yellow fluorescence emission and restoring the blue fluorescence emission. The special effect between ALT and TP will further reverse the changes in the two fluorescent signals. Moreover, in the detection process, when the blue and yellow fluorescence energies in the system are within a certain range, a new white light emission will be generated, which causes the sensing of ALT to present ternary visualization. In addition, a high-security anti-counterfeiting platform is constructed by using the prepared materials and agarose hydrogels. The anti-counterfeiting platform can encrypt information on demand according to the luminous characteristics of different materials. This study not only provides a typical case of ternary visualization sensing by MOF-based materials but also develops a possible method for the construction of a MOF-based hydrogel anti-counterfeiting platform.
Collapse
Affiliation(s)
- Haifeng Sha
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
| |
Collapse
|