1
|
Zhao X, Wang S, Yang K, Yang X, Liu X. Controlled gold-palladium cores in ceria hollow spheres as nanoreactor for plasmon-enhanced catalysis under visible light irradiation. J Colloid Interface Sci 2023; 633:11-23. [PMID: 36427425 DOI: 10.1016/j.jcis.2022.11.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Visible-light-driven organic transformations boosting by localized surface plasmon resonance (LSPR) have been attracting considerable interests. Gold-palladium (Au-Pd) bimetallic nanoparticles (NPs) are considered as ideal plasmonic catalysts realizing efficient light-driven catalysis. Nevertheless, stability and adjustability of plasmonic Au-Pd NPs remain to be a challenging task. Herein, we designed the controlled Au-Pd cores in ceria (CeO2) hollow spheres (Au-Pd@h-CeO2) as nanoreactor for Suzuki cross-coupling reactions. Under visible light irradiation, the Au-Pd@h-CeO2 exhibited remarkable photocatalytic performance with a turnover frequency (TOF) value as high as 797 h-1. More impressively, the coupling reactions of aryl chlorides bearing electron-withdrawing groups proceeded better and afforded the corresponding desired products in good yields. Detailed structural, optical and photoelectrochemical characterizations unraveled that the enhanced photocatalytic efficiency of Au-Pd@h-CeO2 was attributed to the LSPR effect of controllable Au-Pd cores and their synergetic effect of hollow CeO2 shells. The merits of this hollow sphere architecture lied on as followed: (I) Incident light could be reflected and refracted between the inner cores and outer shells, which extended the trapping of incident light, and then enhanced the light harvesting efficiency; (II) the mesoporous architecture of CeO2 hollow spheres provided a huge specific surface area and numerous mesoporous channels, which could enhance the absorption of reactants and provided more active sites; (III) LSPR excitation of Au-Pd NPs and band-gap excitation of CeO2 simultaneously occurred under visible light illumination, inducing a more efficient separation and transfer of charge carriers. Furthermore, due to the confinment effect of CeO2 shells, the Au-Pd@h-CeO2 exhibited an excellent reusability after six cycles without significant deactivation of yield. Our findings provided a facile way to design highly efficient plasmonic-enhanced photocatalysts utilized for catalytic organic reactions.
Collapse
Affiliation(s)
- Xiaohua Zhao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siyao Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaixin Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinya Yang
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China
| | - Xiang Liu
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China.
| |
Collapse
|
2
|
Activating Pd nanoparticles via the Mott-Schottky effect in Ni doped CeO2 nanotubes for enhanced catalytic Suzuki reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Wang F, Li C, Xu T, Li Y, Sun Y, Bai J. Enhancement of the catalytic activity of Suzuki coupling reactions by reduction of modified carriers and promotion of Pd/H 2-Pr xO y surface electron transfer. NEW J CHEM 2022. [DOI: 10.1039/d2nj02830a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd/H2-PrxOy nanotubes were prepared by electrostatic spinning, high-temperature calcination and modified deposition–precipitation method, and exhibited high catalytic performance for Suzuki coupling reaction under mild conditions.
Collapse
Affiliation(s)
- Fu Wang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot, 010051, People's Republic of China
| | - Chunping Li
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot, 010051, People's Republic of China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot, 010051, People's Republic of China
| | - Ying Li
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot, 010051, People's Republic of China
| | - Yinghui Sun
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot, 010051, People's Republic of China
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot, 010051, People's Republic of China
| |
Collapse
|
4
|
Huang X, Zhang K, Peng B, Wang G, Muhler M, Wang F. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02443] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiubing Huang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Kaiyue Zhang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Ge Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| |
Collapse
|
5
|
Barba-Nieto I, Gómez-Cerezo N, Kubacka A, Fernández-García M. Oxide-based composites: applications in thermo-photocatalysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01067k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress on oxide-based thermo-photocatalytic composite systems. Role of plasmonic, defect-related, and thermal effects on the catalytic performance.
Collapse
Affiliation(s)
- Irene Barba-Nieto
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Spain
| | | | - Anna Kubacka
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Spain
| | | |
Collapse
|