1
|
Mohammadi M, Aboonajmi J, Panahi F, Sasanipour M, Sharghi H. Zirconium-catalyzed one-pot synthesis of benzoxazoles using reaction of catechols, aldehydes and ammonium acetate. Sci Rep 2024; 14:25973. [PMID: 39472665 PMCID: PMC11522672 DOI: 10.1038/s41598-024-76839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
In this study, an efficient method for the synthesis of benzoxazoles by coupling catechols, aldehydes and ammonium acetate using ZrCl4 as catalyst in ethanol is reported. A wide range of benzoxazoles (59 examples) are smoothly produced in high yields (up to 97%). Other advantages of the method include large-scale synthesis and the use of oxygen as an oxidant. The mild reaction conditions allowed late-stage functionalization, facilitating access to several derivatives with biologically relevant structures such as β-lactam and quinoline heterocycles.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran.
| | - Maryam Sasanipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| |
Collapse
|
2
|
Krishnamurthi M, Gottapu S, Velpuri VR. Single-step synthesis of ternary metal chalcogenides (sf-CuInS2 and sf-CuInSe2) stripped off the organic cover and their use as a catalyst for symmetric Glaser-Hay coupling reactions. Dalton Trans 2024; 53:8593-8603. [PMID: 38690592 DOI: 10.1039/d4dt00442f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Generally, inorganic nano/microparticles produced by chemical routes are covered by organic surfactants or polymers to control their agglomeration during their synthesis. However, these surfactants and polymers negatively affect their catalytic activity because these molecules mask the surface. This work presents the synthesis of surfactant-free CuInS2 and CuInSe2 (sf-CuInS2 and sf-CuInSe2) nano/microparticles through simple reactions without surfactant or polymer coatings using LiBH4 under a thermodynamically favourable condition. These reactions are rare observations of a single-step process to produce ternary metal chalcogenides without any template assistance. We have also demonstrated efficient catalysis by sf-CuInS2 nanoparticles in the coupling reaction of substituted phenylacetylenes. We tested it as catalysts in dimerizing 1,3-diyne derivatives while using 8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the base. These Glassar-Hay coupling reactions are conducted at room temperature in acetonitrile (4-7 h, depending on the substrate) using 10 mg of sf-CuInS2. The maximum yield obtained in these reactions is 97%, while the catalyst is reusable for five cycles with little difference in its ability to catalyse. The effectiveness of the catalyst is credited to the availability of a free catalytic surface.
Collapse
Affiliation(s)
| | - Sanyasinaidu Gottapu
- School of Chemistry, Univeristy of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India.
| | | |
Collapse
|
3
|
Pakpour F, Safaei E, Azami SM, Wojtczak A, Kaldunska K. The role of a redox-active non-innocent ligand in additive-free C-C Glaser-Hay and Suzuki coupling reactions by an o-aminophenol palladium(ii) complex. RSC Adv 2023; 13:3278-3289. [PMID: 36756395 PMCID: PMC9855615 DOI: 10.1039/d2ra07252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/01/2023] [Indexed: 01/21/2023] Open
Abstract
A novel mononuclear palladium complex with 2-(3,5-di-tert-butyl-2-hydroxyphenyl amino) benzonitrile as a non-innocent ligand (abbreviated as PdIIL2 NIS) was synthesized, and characterized by IR, UV-Vis, 1H and 13C NMR spectroscopies and elemental analysis. The crystal structure clearly showed that the metal center was in a square planar environment. The bond lengths obtained from X-ray structure analysis revealed that both ligands are in the o-iminobenzosemiquinone radical form. The neutral complex showed strong absorptions in the NIR region, corresponding to the ILCT (intra-ligand charge transfer). Catalytic tests performed for the coupling reaction of terminal alkynes showed that the palladium PdIIL2 NIS complex acts as a highly effective catalyst for the base-free C-C coupling reactions, leading to diyne derivatives with excellent yields. The PdIIL2 NIS complex in ethanol, as a green solvent, is demonstrated to be an exceptionally active phosphine-free catalyst for the Suzuki reaction of aryl iodides and bromides. The reaction can be carried out under mild conditions (room temperature) with high yields without using a microwave or phosphine ligands. This catalyst exhibits an interesting application of redox non-innocent ligands, the electron reservoir behavior, which makes it needless to use additional reagents. The theoretical calculation provides more details about the complex structure, molecular orbitals, and electronic state.
Collapse
Affiliation(s)
- Fatemeh Pakpour
- Department of Chemistry, College of Sciences, Shirazu University Shiraz 71454 Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shirazu University Shiraz 71454 Iran
| | - S Mohammad Azami
- Department of Chemistry, College of Sciences, Yasouj University Yasouj 75918-74934 Iran
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun 87-100 Torun Poland
| | - Karolina Kaldunska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun 87-100 Torun Poland
| |
Collapse
|
4
|
Tereba N, Muzioł TM, Wiśniewska J, Podgajny R, Bieńko A, Wrzeszcz G. Structural Diversity, XAS and Magnetism of Copper(II)-Nickel(II) Heterometallic Complexes Based on the [Ni(NCS) 6] 4- Unit. MATERIALS (BASEL, SWITZERLAND) 2023; 16:731. [PMID: 36676467 PMCID: PMC9861906 DOI: 10.3390/ma16020731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The new heterometallic compounds, [{Cu(pn)2}2Ni(NCS)6]n·2nH2O (1), [{CuII(trien)}2Ni(NCS)6CuI(NCS)]n (2) and [Cu(tren)(NCS)]4[Ni(NCS)6] (3) (pn = 1,2-diaminopropane, trien = triethylenetetramine and tren = tris(2-aminoethylo)amine), were obtained and characterized by X-ray analysis, IR spectra, XAS and magnetic measurements. Compounds 1, 2 and 3 show the structural diversity of 2D, 1D and 0D compounds, respectively. Depending on the polyamine used, different coordination polyhedron for Cu(II) was found, i.e., distorted octahedral (1), square pyramidal (2) and trigonal bipyramidal (3), whereas coordination polyhedron for nickel(II) was always octahedral. It provides an approach for tailoring magnetic properties by proper selection of auxiliary ligands determining the topology. In 1, thiocyanate ligands form bridges between the copper and nickel ions, creating 2D layers of sql topology with weak ferromagnetic interactions. Compound 2 is a mixed-valence copper coordination polymer and shows the rare ladder topology of 1D chains decorated with [CuII(tren)]2+ antennas as the side chains attached to nickel(II). The ladder rails are formed by alternately arranged Ni(II) and Cu(I) ions connected by N2 thiocyanate anions and rungs made by N3 thiocyanate. For the Cu(I) ions, the tetrahedral thiocyanate environment mixed N/S donor atoms was found, confirming significant coordination spheres rearrangement occurring at the copper precursor together with the reduction in some Cu(II) to Cu(I). Such topology enables significant simplification of the magnetic properties modeling by assuming magnetic coupling inside {NiIICuII2} trinuclear units separated by diamagnetic [Cu(NCS)(SCN)3]3- linkers. Compound 3 shows three discrete mononuclear units connected by N-H…N and N-H…S hydrogen bonds. Analysis of XAS proves that the average ligand character and the covalency of the unoccupied metal d-based orbitals for copper(II) and nickel(II) increase in the following order: 1 → 2 → 3. In 1 and 2, a weak ferromagnetic coupling between copper(II) and nickel(II) was found, but in 2, additional and stronger antiferromagnetic interaction between copper(II) ions prevailed. Compound 3, as an ionic pair, shows, as expected, a spin-only magnetic moment.
Collapse
Affiliation(s)
- Natalia Tereba
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Tadeusz M. Muzioł
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Grzegorz Wrzeszcz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Pashanova KI, Poddel'sky AI, Piskunov AV. Complexes of “late” transition metals of the 3d row based on functionalized o-iminobenzoquinone type ligands: Interrelation of molecular and electronic structure, magnetic behaviour. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Synthesis, characterization, DNA/BSA binding and cytotoxicity studies of Mononuclear Cu(II) and V(IV) complexes of Mannich bases derived from Lawsone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Xu H, Wang L, Li X, Chen Z, Zhang T. Thiourea Dioxide Coupled with Trace Cu(II): An Effective Process for the Reductive Degradation of Diatrizoate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12009-12018. [PMID: 34431661 DOI: 10.1021/acs.est.1c03823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diatrizoate, a refractory ionic iodinated X-ray contrast media (ICM) compound, cannot be efficiently degraded in a complex wastewater matrix even by advanced oxidation processes. We report in this research that a homogeneous process, thiourea dioxide (TDO) coupled with trace Cu(II) (several micromoles, ubiquitous in some wastewater), is effective for reductive deiodination and degradation of diatrizoate at neutral pH values. Specifically, the molar ratio of iodide released to TDO consumed reached 2 under ideal experimental conditions. TDO eventually decomposed into urea and sulfite/sulfate. Based on the results of diatrizoate degradation, TDO decomposition, and Cu(I) generation and consumption during the TDO-Cu(II) reaction, we confirmed that Cu(I) is responsible for diatrizoate degradation. However, free Cu(I) alone did not work. It was proposed that Cu(I) complexes are actual reactive species toward diatrizoate. Inorganic anions and effluent organic matter negatively influence diatrizoate degradation, but by increasing the TDO dosage, as well as extending the reaction time, its degradation efficiency can still be guaranteed for real hospital wastewater. This reduction reaction could be potentially useful for in situ deiodination and degradation of diatrizoate in hospital wastewater before discharge into municipal sewage networks.
Collapse
Affiliation(s)
- Haodan Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lihong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Barma A, Bhattacharjee A, Roy P. Dinuclear Copper(II) Complexes with N,O Donor Ligands: Partial Ligand Hydrolysis and Alcohol Oxidation Catalysis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arpita Barma
- Department of Chemistry Jadavpur University Jadavpur Kolkata 700 032 India
| | | | - Partha Roy
- Department of Chemistry Jadavpur University Jadavpur Kolkata 700 032 India
| |
Collapse
|
9
|
Nasibipour M, Safaei E, Moaddeli A, Masoumpour MS, Wojtczak A. Biradical o-iminobenzosemiquinonato(1-) complexes of nickel(ii): catalytic activity in three-component coupling of aldehydes, amines and alkynes. RSC Adv 2021; 11:12845-12859. [PMID: 35423810 PMCID: PMC8697240 DOI: 10.1039/d0ra10248b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
The six-coordinated bis-o-iminosemiquinone complex, NiL2 BIS, in which LBIS is the o-iminosemiquinone 1-electron oxidized form of the tridentate o-aminophenol benzoxazole-based ligand H2LBAP, was synthesized and characterized. The crystal structure of the complex reveals octahedral geometry with a NiN4O2 coordination sphere in which Ni(ii) has been surrounded by two tridentate LBIS ligands. This compound exhibits (S Ni = 1) with both spin and orbital contribution to the magnetic moment and antiferromagnetic coupling between two electrons on two LBIS ligands which results in a triplet spin ground state (S = 1). The electronic transitions and the electrochemical behavior of this open-shell molecule are presented here, based on experimental observations and theoretical calculations. The electrochemical behavior of NiL2 BIS was investigated by cyclic voltammetry and indicates ligand-centered redox processes. Three-component coupling of aldehydes, amines and alkynes (A3-coupling) was studied in the presence of the NiL2 BIS complex, and the previously reported four-coordinated bis-o-iminosemiquinone NiL2 NIS. Furthermore, among these two o-iminobenzosemiquinonato(1-) complexes of Ni(ii) (NiL2 NIS and NiL2 BIS), NiL2 NIS was found to be an efficient catalyst in A3-coupling at 85 °C under solvent-free conditions and can be recovered and reused for several cycles with a small decrease in activity.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Ali Moaddeli
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | | | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| |
Collapse
|
10
|
Sinitsa DK, Sukhikh TS, Konchenko SN, Pushkarevsky NA. Synthesis, structures, and one- or two-electron reduction reactivity of mononuclear lanthanide (Ho, Dy) complexes with sterically hindered o-iminobenzoquinone ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Meshcheryakova IN, Arsenyeva KV, Fukin GK, Cherkasov VK, Piskunov AV. Stable N-heterocyclic carbene derivatives of copper(i) and silver(i) containing radical anion redox active ligands. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Nasibipour M, Safaei E, Masoumpour MS, Wojtczak A. Ancillary ligand electro-activity effects towards phenyl acetylene homocoupling reaction by a nickel(ii) complex of a non-innocent O-amino phenol ligand: a mechanistic insight. RSC Adv 2020; 10:24176-24189. [PMID: 35516191 PMCID: PMC9055111 DOI: 10.1039/d0ra04362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
A new Ni(ii) complex, was synthesized from the reaction of a non-innocent o-aminophenol ligand, and Ni(OAc)2. The crystal structure of NiIIL2 NIS (in which, IS stands for iminosemiquinone radical ligand with cyanide (shown by N in NIS) substituent on phenolate rings) exhibits the square planar environment of Ni(ii). The complex has been crystalized in the monoclinic system and Ni(ii) was surrounded by two oxygen and two nitrogen atoms of two ligands. Variable-temperature magnetic susceptibility measurement for crystalline samples of complex shows the effective magnetic moment per molecule (μ eff) of near zero and the diamagnetic nature of the complex (S = 0) which emphasize that strong antiferromagnetic coupling prevailed between the two unpaired electrons of LNIS ligands and Ni(ii) high spin electrons. The complex is EPR silent which confirms the diamagnetic character of the Ni(ii) complex. Electrochemical measurement (CV) indicates the redox-active character of ligand and metal. NiIIL2 NIS complex proved to be effective for free metal- or base counterpart homocoupling of phenyl acetylene at room temperature. To the best of our knowledge, this is the first example of using Ni(ii) complex without using any reducing agent due to the promotion ancillary effect of non-innocent o-aminophenol ligand which acts as an "electron reservoir" and can reversibly accept and donate electrons in the catalytic cycle. The theoretical calculation confirms the magnetostructure, electronic spectrum and confirmed the suggested mechanism of phenyl acetylene homocoupling with emphasis on the role of non-innocent ligand electro-activity and the effect of ligand substituent on the efficiency and stability of the complex.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | | | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| |
Collapse
|