1
|
Fu S, Liu B. Naturally Occurring [4+2] Type Terpenoid Dimers Assembled through Unmatched-electron-demand Cycloaddition. Chemistry 2024; 30:e202402786. [PMID: 39247968 DOI: 10.1002/chem.202402786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/10/2024]
Abstract
Terpenoid dimers of the [4+2] type, which are naturally occurring compounds biosynthetically derived from the [4+2] cycloaddition of two precursors, have garnered considerable attention due to their complex molecular structures, diverse biological activities, and intriguing biosynthetic pathways. We have previously summarized the advancements in three types of [4+2] terpenoid dimers. In this review, we will focus on the lesser-explored class of [4+2] terpenoid dimers which assembled from two electron-deficient precursors via the unmatched-electron-demand Diels-Alder reaction (UMEDDA). We will summarize their sources, biological activities, proposed biosynthesis, and chemical syntheses. Finally, a summary and outlook for this fascinating class of compounds will be presented.
Collapse
Affiliation(s)
- Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Zhou B, Yue JM. Terpenoids of plants from Chloranthaceae family: chemistry, bioactivity, and synthesis. Nat Prod Rep 2024; 41:1368-1402. [PMID: 38809164 DOI: 10.1039/d4np00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Covering: 1976 to December 2023Chloranthaceae is comprised of four extant genera (Chloranthus, Sarcandra, Hedyosmum, and Ascarina), totaling about 80 species, many of which have been widely used as herbal medicines for diverse medical purposes. Chloranthaceae plants represent a rich source of structurally interesting and diverse secondary metabolites, with sesquiterpenoids and diterpenoids being the predominant structural types. Lindenane sesquiterpenoids and their oligomers, chemotaxonomical markers of the family Chloranthaceae, have shown a wide spectrum of bioactivities, attracting significant attention from organic chemists and pharmacologists. Recent achievements also demonstrated the research value of two unique structural types in this plant family, sesquiterpenoid-monoterpenoid heterodimers and meroterpenoids. This review systematically summarizes 682 structurally characterized terpenoids from 22 Chloranthaceae plants and their key biological activities as well as the chemical synthesis of selected terpenoids.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
3
|
Gao L, Ding Q, Lei X. Hunting for the Intermolecular Diels-Alderase. Acc Chem Res 2024; 57:2166-2183. [PMID: 38994670 DOI: 10.1021/acs.accounts.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
ConspectusThe Diels-Alder reaction is well known as a concerted [4 + 2] cycloaddition governed by the Woodward-Hoffmann rules. Since Prof. Otto Diels and his student Kurt Alder initially reported the intermolecular [4 + 2] cycloaddition between cyclopentadiene and quinone in 1928, it has been recognized as one of the most powerful chemical transformations to build C-C bonds and construct cyclic structures. This named reaction has been widely used in synthesizing natural products and drug molecules. Driven by the synthetic importance of the Diels-Alder reaction, identifying the enzyme that stereoselectively catalyzes the Diels-Alder reaction has become an intriguing research area in natural product biosynthesis and biocatalysis. With significant progress in sequencing and bioinformatics, dozens of Diels-Alderases have been characterized in microbial natural product biosynthesis. However, few are evolutionally dedicated to catalyzing an intermolecular Diels-Alder reaction with a concerted mechanism.This Account summarizes our endeavors to hunt for the naturally occurring intermolecular Diels-Alderase from plants. Our research journey started from the biomimetic syntheses of D-A-type terpenoids and flavonoids, showing that plants use both nonenzymatic and enzymatic intermolecular [4 + 2] cycloadditions to create complex molecules. Inspired by the biomimetic syntheses, we identify an intermolecular Diels-Alderase hidden in the biosynthetic pathway of mulberry Diels-Alder-type cycloadducts using a biosynthetic intermediate probe-based target identification strategy. This enzyme, MaDA, is an endo-selective Diels-Alderase and is then functionally characterized as a standalone intermolecular Diels-Alderase with a concerted but asynchronous mechanism. We also discover the exo-selective intermolecular Diels-Alderases in Morus plants. Both the endo- and exo-selective Diels-Alderases feature a broad substrate scope, but their mechanisms for controlling the endo/exo pathway are different. These unique intermolecular Diels-Alderases phylogenetically form a subgroup of FAD-dependent enzymes that can be found only in moraceous plants, explaining why this type of [4 + 2] cycloadduct is unique to moraceous plants. Further studies of the evolutionary mechanism reveal that an FAD-dependent oxidocyclase could acquire the Diels-Alderase activity via four critical amino acid mutations and then gradually lose its original oxidative activity to become a standalone Diels-Alderase during the natural evolution. Based on these insights, we designed new Diels-Alderases and achieved the diversity-oriented chemoenzymatic synthesis of D-A products using either naturally occurring or engineered Diels-Alderases.Overall, this Account describes our decade-long efforts to discover the intermolecular Diels-Alderases in Morus plants, particularly highlighting the importance of biomimetic synthesis and chemical proteomics in discovering new intermolecular Diels-Alderases from plants. Meanwhile, this Account also covers the evolutionary and catalytic mechanism study of intermolecular Diels-Alderases that may provide new insights into how to discover and design new Diels-Alderases as powerful biocatalysts for organic synthesis.
Collapse
Affiliation(s)
- Lei Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi Ding
- School of Life Science, Tsinghua University, Beijing 100084, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Dai JM, Yan BC, Hu K, Li XR, Li XN, Sun HD, Puno PT. Isoxerophilusins A and B, Two Novel Polycyclic Asymmetric Diterpene Dimers from Isodon xerophilus: Structural Elucidation, Modification, and Inhibitory Activities against α-Glucosidase. Org Lett 2024; 26:6203-6208. [PMID: 39004824 DOI: 10.1021/acs.orglett.4c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Isoxerophilusins A (1) and B (2), two unprecedented diterpene heterodimers biogenetically from ent-atisanes and abietanes, were isolated from the rhizomes of Isodon xerophilus. Their structures were determined by extensive spectroscopic analysis and single-crystal X-ray diffraction. Selective esterification of 1 generated 11 new derivatives. All derivatives showed excellent α-glucosidase inhibitory activity in comparison to acarbose. Compounds 12 and 13 demonstrated significant inhibition against α-glucosidase with IC50 values of 4.92 and 3.83 μM, respectively.
Collapse
Affiliation(s)
- Jia-Meng Dai
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing-Chao Yan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Kun Hu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Xing-Ren Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Xiao-Nian Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Han-Dong Sun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Pema-Tenzin Puno
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| |
Collapse
|
5
|
Meng F, Wang Z, Peng S, Zhou G, Khalid A, Mao J, Wang G, Liao Z, Chen M. Recent advances of sesquiterpenoid dimers from Compositae: distribution, chemistry and biological activities. PHYTOCHEMISTRY REVIEWS 2024; 23:625-655. [DOI: 10.1007/s11101-023-09911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/05/2023] [Indexed: 11/26/2024]
|
6
|
Ma Z, Chen Y, Wang R, Zhu M. Synthesis of polymerizable betulin maleic diester derivative for dental restorative resins with antibacterial activity. Dent Mater 2024; 40:941-950. [PMID: 38719709 DOI: 10.1016/j.dental.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Bisphenol A glycidyl methacrylate (Bis-GMA) is of great importance for dental materials as the preferred monomer. However, the presence of bisphenol-A (BPA) core in Bis-GMA structure causes potential concerns since it is associated with endocrine diseases, developmental abnormalities, and cancer lesions. Therefore, it is desirable to develop an alternative replacement for Bis-GMA and explore the intrinsic relationship between monomer structure and resin properties. METHODS Here, the betulin maleic diester derivative (MABet) was synthesized by a facile esterification reaction using plant-derived betulin and maleic anhydride as raw materials. Its chemical structure was confirmed by 1H and 13C NMR spectra, FT-IR spectra, and HR-MS, respectively. The as-synthesized MABet was then used as polymerizable comonomer to partially or completely substitute Bis-GMA in a 50:50 Bis-GMA: TEGDMA resin (5B5T) to formulate dental restorative resins. These were then determined for the viscosity behavior, light transmittance, real-time degree of conversion, residual monomers, mechanical performance, cytotoxicity, and antibacterial activity against Streptococcus mutans (S. mutans) in detail. RESULTS Among all experimental resins, increasing the MABet concentration to 50 wt% made the resultant 5MABet5T resin have a maximum in viscosity and appear dark yellowish after polymerization. In contrast, the 1MABet4B5T resin with 10 wt% MABet possessed comparable shear viscosity and polymerization conversion (46.6 ± 1.0% in 60 s), higher flexural and compressive strength (89.7 ± 7.8 MPa; 345.5 ± 14.4 MPa) to those of the 5B5T control (48.5 ± 0.6%; 65.7 ± 6.7 MPa; 223.8 ± 57.1 MPa). This optimal resin also had significantly lower S. mutans colony counts (0.35 ×108 CFU/mL) than 5B5T (7.6 ×108 CFU/mL) without affecting cytocompatibility. SIGNIFICANCE Introducing plant-derived polymerizable MABet monomer into dental restorative resins is an effective strategy for producing antibacterial dental materials with superior physicochemical property.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Sun J, Li A, Jiao S, Liu C, Zhang Z, Chen H, Liang Y, Gao X, Cao L, Bai C, Chai X. Dimeric eremophilane-type sesquiterpenoids from the peeled stems of Syringa pinnatifolia. PHYTOCHEMISTRY 2024; 221:114048. [PMID: 38447597 DOI: 10.1016/j.phytochem.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
A continued phytochemical investigation guided by 1H NMR and LC-MS data on the ethanol extract from the peeled stems of Syringa pinnatifolia Hemsl. led to the isolation of 16 undescribed dimeric eremophilane sesquiterpenoids, namely syringenes R-Z (1-9) and A1-G1 (10-16). These structures were elucidated by extensive analysis of spectroscopic data, including HRESIMS, NMR, quantum-mechanics-based computational analysis of NMR chemical shifts, and single-crystal X-ray diffraction analyses, and a concise rule for determination of relative configuration of angular methyl was proposed. The results of the cardioprotective assay demonstrated that 3 exhibits a protective effect against hypoxia-induced injuries in H9c2 cells. This effect was observed at a concentration of 10 μM, with a protective rate of 28.43 ± 11.80%.
Collapse
Affiliation(s)
- Jingjing Sun
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, PR China; Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Anni Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Shungang Jiao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Changxin Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Zefeng Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Hongying Chen
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yana Liang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Xiaoli Gao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Lan Cao
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Changcai Bai
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China.
| | - Xingyun Chai
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| |
Collapse
|
8
|
Zhang CY, Zhang JZ, Li YL, Xu ZJ, Qiao YN, Yuan SZ, Tang YJ, Lou HX. Heterodimers of Aromadendrane Sesquiterpenoid with Benzoquinone from the Chinese Liverwort Mylia nuda. JOURNAL OF NATURAL PRODUCTS 2024; 87:132-140. [PMID: 38157445 DOI: 10.1021/acs.jnatprod.3c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Mylnudones A-G (1-7), unprecedented 1,10-seco-aromadendrane-benzoquinone-type heterodimers, and a highly rearranged aromadendrane-type sesquiterpenoid (8), along with four known analogs (9-12), were isolated from the liverwort Mylia nuda. Compounds 1-6 and 7, bearing tricyclo[6.2.1.02,7] undecane and tricyclo[5.3.1.02,6] undecane backbones, likely formed via a Diels-Alder reaction and radical cyclization, respectively. Their structures were determined by spectroscopic analysis, computational calculation, and single-crystal X-ray diffraction analysis. Dimeric compounds displayed cytoprotective effects against glutamic acid-induced neurological deficits.
Collapse
Affiliation(s)
- Chun-Yang Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Jiao-Zhen Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Yue-Lan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Ya-Nan Qiao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Shuang-Zhi Yuan
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, People's Republic of China
| |
Collapse
|
9
|
Luo J, Zhang D, Tang P, Wang N, Zhao S, Kong L. Chemistry and bioactivity of lindenane sesquiterpenoids and their oligomers. Nat Prod Rep 2024; 41:25-58. [PMID: 37791885 DOI: 10.1039/d3np00022b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Covering: 1925 to July 2023Among the sesquiterpenoids with rich structural diversity and potential bioactivities, lindenane sesquiterpenoids (LSs) possess a characteristic cis, trans-3,5,6-carbocyclic skeleton and mainly exist as monomers and diverse oligomers in plants from the Lindera genus and Chloranthaceae family. Since the first identification of lindeneol from Lindera strychnifolia in 1925, 354 natural LSs and their oligomers with anti-inflammatory, antitumor, and anti-infective activities have been discovered. Structurally, two-thirds of LSs exist as oligomers with interesting skeletons through diverse polymeric patterns, especially Diels-Alder [4 + 2] cycloaddition. Fascinated by their diverse bioactivities and intriguing polycyclic architectures, synthetic chemists have engaged in the total synthesis of natural LSs in recent decades. In this review, the research achievements related to LSs from 1925 to July of 2023 are systematically and comprehensively summarized, focusing on the classification of their structures, chemical synthesis, and bioactivities, which will be helpful for further research on LSs and their oligomers.
Collapse
Affiliation(s)
- Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Danyang Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Pengfei Tang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Nan Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Shuai Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
10
|
Li Y, Liu W, Xu J, Guo Y. Chlorahololide D, a Lindenane-Type Sesquiterpenoid Dimer from Chloranthus holostegius Suppressing Breast Cancer Progression. Molecules 2023; 28:7070. [PMID: 37894550 PMCID: PMC10608938 DOI: 10.3390/molecules28207070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Aimed at discovering small molecules as anticancer drugs or lead compounds from plants, a lindenane-type sesquiterpene dimer, chlorahololide D, was isolated from Chloranthus holostegius. The literature review showed that there were few reports on the antitumor effects and mechanisms of chlorahololide D. Our biological assay suggested that chlorahololide D blocked the growth and triggered apoptosis of MCF-7 cells by stimulating the reactive oxygen species (ROS) levels and arresting the cell cycle at the G2 stage. Further mechanism exploration suggested that chlorahololide D regulated apoptosis-related proteins Bcl-2 and Bax. Moreover, chlorahololide D inhibited cell migration by regulating the FAK signaling pathway. In the zebrafish xenograft model, chlorahololide D was observed to suppress tumor proliferation and migration significantly. Considering the crucial function of angiogenesis in tumor development, the anti-angiogenesis of chlorahololide D was also investigated. All of the research preliminarily revealed that chlorahololide D could become an anti-breast cancer drug.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (Y.L.); (W.L.)
| | - Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (Y.L.); (W.L.)
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (Y.L.); (W.L.)
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; (Y.L.); (W.L.)
| |
Collapse
|
11
|
Peng XR, Unsicker SB, Gershenzon J, Qiu MH. Structural diversity, hypothetical biosynthesis, chemical synthesis, and biological activity of Ganoderma meroterpenoids. Nat Prod Rep 2023; 40:1354-1392. [PMID: 37051770 DOI: 10.1039/d3np00006k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Covering: 2018 to 2022Meroterpenoids found in fungal species of the genus Ganoderma and known as Ganoderma meroterpenoids (GMs) are substances composed of a 1,2,4-trisubstituted benzene and a polyunsaturated side chain. These substances have attracted the attention of chemists and pharmacologists due to their diverse structures and significant bioactivity. In this review, we present the structures and possible biosynthesis of representative GMs newly found from 2018 to 2022, as well as chemical synthesis and biological activity of some interesting GMs. We propose for the first time a plausible biosynthetic pathway for GMs, which will certainly motivate further research on the biosynthetic pathway in Ganoderma species, as well as on chemical synthesis of GMs as important bioactive compounds for the purpose of drug development.
Collapse
Affiliation(s)
- Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Sybille B Unsicker
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
12
|
Bailly C. Yuexiandajisu diterpenoids from Euphorbia ebracteolata Hayata (Langdu roots): An overview. PHYTOCHEMISTRY 2023; 213:113784. [PMID: 37419377 DOI: 10.1016/j.phytochem.2023.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
The roots of the plant Euphorbia ebracteolata Hayata (Yue Xian Da Ji) are commonly used in traditional Chinese medicine to treat multiple diseases such as chronic liver diseases, oedema, pulmonary diseases and cancer. It is the main ingredient of the TCM called Langdu which can be prepared also from roots of E. fischeriana Steud. and occasionally from Stellera chamaejasme species. Numerous bioactive natural products have been isolated from E. ebracteolata including a large diversity of diterpenoids with anti-inflammatory and anticancer properties. One little series of compounds has been named yuexiandajisu (A, B, C, D, D1, E, F) which comprises two casbane-, one isopimarane-, two abietane-, and two rosane-type diterpenes including a dimeric molecule. The origin, structural diversity and properties of these little-known natural products is discussed here. Several of these compounds have been identified in the roots of other Euphorbia species, notably the potent phytotoxic agent yuexiandajisu C. The abietane diterpenes yuexiandajisu D-E exhibit marked anticancer properties but their mechanism of action remains unresolved. The dimeric compound, renamed yuexiandajisu D1, also exhibit anti-proliferative properties against cancer cell lines, unlike the rosane diterpene yuexiandajisu F. The structural or functional analogy with other diterpenoids is discussed.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille, Wasquehal, 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000, Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000, Lille, France.
| |
Collapse
|
13
|
Zhou PJ, Huang T, Ma GL, Tong YP, Chen WX, Zang Y, Xiong J, Li J, Hu JF. Forrestiacids E-K: Further [4 + 2]-Type Triterpene-Diterpene Hybrids as Potential ACL Inhibitors from the Vulnerable Conifer Pseudotsuga forrestii. JOURNAL OF NATURAL PRODUCTS 2023; 86:1251-1260. [PMID: 37196240 DOI: 10.1021/acs.jnatprod.3c00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seven [4 + 2]-type triterpene-diterpene hybrids derived from a rearranged or a normal lanostane unit (dienophile) and an abietane moiety (diene), forrestiacids E-K (1-7, respectively), were further isolated and characterized from Pseudotsuga forrestii (a vulnerable conifer endemic to China). The intriguing molecules were revealed with the guidance of an LC-MS/MS-based molecular ion networking strategy combined with conventional phytochemical procedures. Their chemical structures with absolute configurations were established by spectroscopic data, chemical transformation, electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. They all contain a rare bicyclo[2.2.2]octene motif. Both forrestiacids J (6) and K (7) represent the first examples of this unique class of [4 + 2]-type hybrids that arose from a normal lanostane-type dienophile. Some isolates remarkably inhibited ATP-citrate lyase (ACL), with IC50 values ranging from 1.8 to 11 μM. Docking studies corroborated the findings by highlighting the interactions between the bioactive compounds and the ACL enzyme (binding affinities: -9.9 to -10.7 kcal/mol). The above findings reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.
Collapse
Affiliation(s)
- Peng-Jun Zhou
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Ting Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Guang-Lei Ma
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Ying-Peng Tong
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
| | - Wen-Xue Chen
- Department of Chemistry, Fudan University, Shanghai 200438, People's Republic of China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, People's Republic of China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, People's Republic of China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, People's Republic of China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| |
Collapse
|
14
|
Li Y, Zhang R, Song Y, Xie H, Wu R. A DFT study of the endo-selectivity mechanism of the Diels-Alder reaction in lindenane dimeric sesquiterpene synthesis promoted by pyridines. Phys Chem Chem Phys 2023; 25:3772-3779. [PMID: 36644930 DOI: 10.1039/d2cp04986d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The lindenane dimeric sesquiterpenoids with versatile biological activities are accessible via biometric synthesis, in which the endo-selective Diels-Alder reaction plays an important role. To explore the endo-selectivity of the Diels-Alder reaction between lindenane sesquiterpenes promoted by pyridines, density functional theory (DFT) calculations were performed to explore the reaction mechanism between pyridines and D-A monomers. The calculations performed on the reaction pathways explain why pyridines can promote endo-selectivity via hydrogen bonding, and the hydrogen bond strength is a key factor driving the Diels-Alder reaction in major biochemical systems. These DFT-level insights will pave the way for designing better promoters for Diels-Alder reactions in biometric synthesis applications.
Collapse
Affiliation(s)
- Yuxin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | - Rong Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| | - Yuling Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
15
|
Yang P, Jia Q, Song S, Huang X. [2 + 2]-Cycloaddition-derived cyclobutane natural products: structural diversity, sources, bioactivities, and biomimetic syntheses. Nat Prod Rep 2023. [DOI: 10.1039/d2np00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the structural diversity, bioactivities, and biomimetic synthesis of [2 + 2]-type cyclobutane natural products, along with discussion of their biosynthesis, stereochemical analysis, racemic occurrence, and biomimetic synthesis.
Collapse
Affiliation(s)
- Peiyuan Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qi Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shaojiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoxiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
16
|
Antiviral spirooliganones C and D with a unique spiro[bicyclo[2.2.2]octane-2,2′-bicyclo[3.1.0]hexane] carbon skeleton from the roots of Illicium oligandrum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Chang Y, Sun C, Wang C, Huo X, Zhao W, Ma X. Biogenetic and biomimetic synthesis of natural bisditerpenoids: hypothesis and practices. Nat Prod Rep 2022; 39:2030-2056. [PMID: 35983892 DOI: 10.1039/d2np00039c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to March 2022Bisditerpenoids, or diterpenoid dimers, are a group of natural products with high structural variance, deriving from homo- or hetero-dimeric coupling of two diterpenoid units. They usually possess complex architectures resulting from the diversity of monomeric diterpenoids as building blocks and the dimerization processes. These compounds have attracted the attention of synthetic and biological scientists owing to the rarity of their natural origin and their significant biological activities. Herein, we provide a review highlighting some of the interesting bisditerpenoids reported since 1961 and showcase the chemical diversity in both their structures and biosynthesis, as well as their biological functions. This review focuses on the biosynthetic dimerization pathways of interesting molecules and their biomimetic synthesis, which may act as useful inspiration for the discovery and synthesis of more bisditerpenoids and further pharmacological investigations.
Collapse
Affiliation(s)
- Yibo Chang
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China. .,Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.
| | - Chengpeng Sun
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Chao Wang
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.
| | - Wenyu Zhao
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Xiaochi Ma
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China. .,Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
18
|
Syringenes A–L: Bioactive dimeric eremophilane sesquiterpenoids from Syringa pinnatifolia. Bioorg Chem 2022; 125:105879. [DOI: 10.1016/j.bioorg.2022.105879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/20/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
|
19
|
Huang L, Zheng G, Feng Y, Jin P, Gao B, Zhang H, Ma X, Zhou J, Yao G. Highly Oxygenated Dimeric Grayanane Diterpenoids as Analgesics:
TRPV1
and
TRPA1
Dual Antagonists from
Rhododendron molle. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lang Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Yuanyuan Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Biao Gao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Xiaomin Ma
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Junfei Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science Kashi University Kashgar 844007 China
| |
Collapse
|
20
|
Guan Z, Zhong X, Ye Y, Li X, Cong H, Yi H, Zhang H, Huang Z, Lei A. Selective radical cascade (4+2) annulation with olefins towards the synthesis of chroman derivatives via organo-photoredox catalysis. Chem Sci 2022; 13:6316-6321. [PMID: 35733882 PMCID: PMC9159083 DOI: 10.1039/d2sc00903j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
Due to the importance of chroman frameworks in medicinal chemistry, the development of novel synthetic methods for these structures is gaining increasing interest of chemists. Reported here is a new (4 + 2) radical annulation approach for the construction of these functional six-membered frameworks via photocatalysis. Featuring mild reaction conditions, the protocol allows readily available N-hydroxyphthalimide esters and electron-deficient olefins to be converted into a wide range of valuable chromans in a highly selective manner. Moreover, the present strategy can be used in the late-stage functionalization of natural product derivatives and biologically active compounds, which demonstrated the potential application. This method is complementary to the traditional Diels–Alder [4 + 2] cycloaddition reaction of ortho-quinone methides and electron-rich dienophiles, since electron-deficient dienophiles were smoothly transformed into the desired chromans. We have developed a (4 + 2) radical annulation approach for the synthesis of diverse chromans. This method is complementary to the traditional Diels–Alder [4 + 2] annulation of ortho-quinone methides and electron-rich dienophiles.![]()
Collapse
Affiliation(s)
- Zhipeng Guan
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xingxing Zhong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Yayu Ye
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Xiangwei Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Hengjiang Cong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Zhiliang Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei People's Republic of China
| |
Collapse
|
21
|
Li Y, Zhao S, Sun Y, Li J, Wang Y, Xu W, Luo J, Kong L. Automatic MS/MS Data Mining Strategy for Discovering Target Natural Products: A Case of Lindenane Sesquiterpenoids. Anal Chem 2022; 94:8514-8522. [PMID: 35637569 DOI: 10.1021/acs.analchem.2c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widely used method for discovering natural products (NPs); however, automatic MS/MS data mining for the discovery of NPs remains a challenge. In this work, LindenaneExtractor, a program based on characteristic MS/MS ions of lindenane sesquiterpenoids (LSs) was developed to automatically extract the LSs features for target LS discovery in plant extracts. To build this program, fragmentation mechanisms of characteristic ions of LSs were elucidated and confirmed by quantum chemical calculation and deuterium-labeled compounds. Subsequently, the information of characteristic ions was integrated and coded to develop LindenaneExtractor, which was further examined by standards and several public databases. Finally, the target LS features in Sarcandra hainanensis extract were automatically extracted by LindenaneExtractor and visualized by feature-based molecular networking and two-dimensional (2D) retention time-m/z plot, leading to the discovery of 96 target LSs in total, 37 of these compounds were potentially new NPs and one was confirmed by further isolation. This work proposed a new strategy for target NP analysis and discovery based on automatic MS/MS data mining, which could significantly improve the efficiency and accuracy of NP discovery.
Collapse
Affiliation(s)
- Yongyi Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Shuai Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yunpeng Sun
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jixin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yongyue Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Wenjun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
22
|
Franov LJ, Hart JD, Pullella GA, Sumby CJ, George JH. Bioinspired Total Synthesis of Erectones A and B, and the Revised Structure of Hyperelodione D. Angew Chem Int Ed Engl 2022; 61:e202200420. [PMID: 35225410 PMCID: PMC9314102 DOI: 10.1002/anie.202200420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 12/22/2022]
Abstract
The field of biomimetic synthesis seeks to apply biosynthetic hypotheses to the efficient construction of complex natural products. This approach can also guide the revision of incorrectly assigned structures. Herein, we describe the evolution of a concise total synthesis and structural reassignment of hyperelodione D, a tetracyclic meroterpenoid derived from a Hypericum plant, alongside some biogenetically related natural products, erectones A and B. The key step in the synthesis of hyperelodione D forms six stereocentres and three rings in a bioinspired cascade reaction that features an intermolecular Diels-Alder reaction, an intramolecular Prins reaction and a terminating cycloetherification.
Collapse
Affiliation(s)
- Liam J. Franov
- Department of ChemistryUniversity of AdelaideAdelaideSA 5000Australia
| | - Jacob D. Hart
- Department of ChemistryUniversity of AdelaideAdelaideSA 5000Australia
| | - Glenn A. Pullella
- Department of ChemistryUniversity of AdelaideAdelaideSA 5000Australia
| | | | | |
Collapse
|
23
|
Wang X, Wang Z, Ma X, Huang Z, Sun K, Gao X, Fu S, Liu B. Asymmetric Total Synthesis of Shizukaol J, Trichloranoid C and Trishizukaol A. Angew Chem Int Ed Engl 2022; 61:e202200258. [PMID: 35102682 DOI: 10.1002/anie.202200258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 01/14/2023]
Abstract
The asymmetric total synthesis of three lindenane sesquiterpenoid oligomers, shizukaol J, trichloranoid C and trishizukaol A, has been accomplished concisely in 15, 16 and 18 longest linear steps, respectively. The expeditious construction of molecular architectures was facilitated by Nelson's catalytic asymmetric ketene-aldehyde cycloaddition, a sequence of allylic alkylation/reduction/acidic cyclization to forge a lactone, and a double aldol condensation cascade to construct the 5/6 bicyclic system. Diastereoselective nucleophilic substitution promoted by a phase transfer catalyst constructed the C11 quaternary stereogenic center, thus prompting synthetic efficacy toward shizukaol J. The synthesis of trichloranoid C and trishizukaol A was achieved after a cascade involving furanyl diene formation and a Diels-Alder reaction, as well as a one-pot sequence involving furan oxidation and global deprotection. Furthermore, our biological evaluation revealed that two compounds exhibited unexpected toxicity against tumor cell lines.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Zhuang Wang
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Xianjian Ma
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Zhengsong Huang
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Ke Sun
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Rd., Xiamen, Fujian, 361102, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Rd., Xiamen, Fujian, 361102, China
| | - Shaomin Fu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Bo Liu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| |
Collapse
|
24
|
Franov LJ, Hart JD, Pullella GA, Sumby CJ, George JH. Bioinspired Total Synthesis of Erectones A and B, and the Revised Structure of Hyperelodione D. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liam J. Franov
- Department of Chemistry University of Adelaide Adelaide SA 5000 Australia
| | - Jacob D. Hart
- Department of Chemistry University of Adelaide Adelaide SA 5000 Australia
| | - Glenn A. Pullella
- Department of Chemistry University of Adelaide Adelaide SA 5000 Australia
| | | | - Jonathan H. George
- Department of Chemistry University of Adelaide Adelaide SA 5000 Australia
| |
Collapse
|
25
|
Peng Y, Chang Y, Sun C, Wang W, Wang C, Tian Y, Zhang B, Deng S, Zhao W, Ma X. Octacyclic and decacyclic ent-abietane dimers with cytotoxic activity from Euphorbia fischeriana steud. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Wang X, Wang Z, Ma X, Huang Z, Sun K, Gao X, Fu S, Liu B. Asymmetric Total Synthesis of Shizukaol J, Trichloranoid C and Trishizukaol A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao Wang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Zhuang Wang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Xianjian Ma
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Zhengsong Huang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Ke Sun
- School of Pharmaceutical Sciences Xiamen University South Xiangan Rd. Xiamen Fujian 361102 China
| | - Xiang Gao
- School of Pharmaceutical Sciences Xiamen University South Xiangan Rd. Xiamen Fujian 361102 China
| | - Shaomin Fu
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Bo Liu
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| |
Collapse
|
27
|
Peng X, Luo RC, Su H, Zhou L, Ran XQ, Guo YR, Yao YG, Qiu M. ((±)-Spiroganoapplanin A, a complex polycyclic meroterpenoid dimer from Ganoderma applanatum displaying the potential against Alzheimer’s disease. Org Chem Front 2022. [DOI: 10.1039/d2qo00246a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair of meroterpenoid dimers, (±)-spiroganoapplanain A (1) represents a new subtype of Ganoderma meroterpenoid dimers with a 6/5/5/6/5/6 hexacyclic system were isolated from Ganoderma applanatum. Their structures were determined...
Collapse
|
28
|
Gharpure SJ, Jegadeesan S, Vishwakarma DS. Total synthesis of myristinins A–F and 3′-hydroxy-5,7-dimethoxy-4- O-2′-cycloflavan by iterative generation of o-quinone methides. NEW J CHEM 2022. [DOI: 10.1039/d2nj00244b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iterative generation of o-quinone methides (o-QMs) and [4+2] cycloaddition followed by inter/intra-molecular Michael addition in a cascade sequence gave expedient access to the total synthesis of myristinins A–F and 3′-hydroxy-5,7-dimethoxy-4-O-2′-cycloflavan and their analogues, respectively.
Collapse
Affiliation(s)
- Santosh J. Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400076, India
| | - S. Jegadeesan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400076, India
| | | |
Collapse
|
29
|
Chen FL, Liu DL, Fu J, Fu L, Gao J, Bai LP, Zhang W, Jiang ZH, Zhu GY. Atrachinenynes A–D, four diacetylenic derivatives with unprecedented skeletons from the rhizomes of Atractylodes chinensis. NEW J CHEM 2022. [DOI: 10.1039/d2nj02149h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atrachinenynes A–D (1–4), four undescribed acetylenic derivatives with diverse skeletons, were isolated from Atractylodes chinensis.
Collapse
Affiliation(s)
- Fei-Long Chen
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, P. R. China
| | - Dong-Li Liu
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, P. R. China
| | - Jing Fu
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, P. R. China
| | - Lu Fu
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, P. R. China
| | - Jin Gao
- Increasepharm (Hengqin) Institute Co., Ltd, National Engineering Research Center for Modernization of Traditional Chinese Medicine New DDS Branch, Guangdong Province Engineering Research Center for Aerosol Inhalation Preparation, Zhuhai 519000, China
- Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Li-Ping Bai
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, P. R. China
| | - Wei Zhang
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, P. R. China
| | - Zhi-Hong Jiang
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, P. R. China
| | - Guo-Yuan Zhu
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, P. R. China
| |
Collapse
|
30
|
Liu SG, Zhang CY, Zhou JC, Han JJ, Zhu MZ, Zhang JZ, Li Y, Xu ZJ, Meng H, Wang X, Zong Y, Yuan SZ, Qiao YN, Tang YJ, Lou HX. Diels–Alder adducts of a labdane diterpenoid from the Chinese liverwort Pallavicinia subciliata. Org Chem Front 2022. [DOI: 10.1039/d1qo01891d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A 7,8-seco-2,8-cyclolabdane diterpenoid, pallasubcin A (1), and three pallasubcin A-derived dimers, pallasubcins B–D (2–4), formed via a Diels–Alder reaction, were isolated from the Chinese liverwort Pallavicinia subciliata.
Collapse
Affiliation(s)
- Shu-Gong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Chun-Yang Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Jin-Chuan Zhou
- School of Pharmacy, Linyi University, Linyi 276000, P. R. China
| | - Jing-Jing Han
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Ming-Zhu Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Jiao-Zhen Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Yi Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Ze-Jun Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Hui Meng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Xue Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Yan Zong
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Shuang-Zhi Yuan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Ya-Nan Qiao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
31
|
Chen F, Liu D, Fu J, Yang J, Bai L, Zhang W, Jiang Z, Zhu G. (±)‐Atrachinenins A—C, Three Pairs of Caged
C
27
Meroterpenoids from the Rhizomes of
Atractylodes chinensis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fei‐Long Chen
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Dong‐Li Liu
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Jing Fu
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Ji Yang
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Li‐Ping Bai
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Wei Zhang
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Zhi‐Hong Jiang
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| | - Guo‐Yuan Zhu
- Key Laboratory of Quality Research in Chinese Medicine, Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology Macau China
| |
Collapse
|
32
|
Gharpure SJ, Jegadeesan S, Vishwakarma DS. Acid-catalysed iterative generation of o-quinone methides for the synthesis of dioxabicyclo[3.3.1]nonanes: total synthesis of myristicyclins A-B. Chem Commun (Camb) 2021; 57:13333-13336. [PMID: 34816832 DOI: 10.1039/d1cc06146a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a practical and efficient method for the synthesis of bioactive flavanoids relying on the strategic use of o-quinine methide (o-QM) intermediates. This involves Brønsted acid-catalysed iterative generation of o-QMs/[4+2] cycloaddition/intermolecular Michael addition/cyclative acetalization in a cascade sequence for the synthesis of dioxabicyclo[3.3.1]nonanes. The 'one-pot', controlled cascade sequence successfully provided the shortest route amenable for gram scale synthesis of natural products (±)-myristicyclins A-B.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - S Jegadeesan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | |
Collapse
|
33
|
Xiong J, Zhou PJ, Jiang HW, Huang T, He YH, Zhao ZY, Zang Y, Choo YM, Wang X, Chittiboyina AG, Pandey P, Hamann MT, Li J, Hu JF. Forrestiacids A and B, Pentaterpene Inhibitors of ACL and Lipogenesis: Extending the Limits of Computational NMR Methods in the Structure Assignment of Complex Natural Products. Angew Chem Int Ed Engl 2021; 60:22270-22275. [PMID: 34374477 PMCID: PMC11173361 DOI: 10.1002/anie.202109082] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 12/30/2022]
Abstract
Forrestiacids A (1) and B (2) are a novel class of [4+2] type pentaterpenoids derived from a rearranged lanostane moiety (dienophile) and an abietane unit (diene). These unprecedented molecules were isolated using guidance by molecular ion networking (MoIN) from Pseudotsuga forrestii, an endangered member of the Asian Douglas Fir Family. The intermolecular hetero-Diels-Alder adducts feature an unusual bicyclo[2.2.2]octene ring system. Their structures were elucidated by spectroscopic analysis, GIAO NMR calculations and DP4+ probability analyses, electronic circular dichroism calculations, and X-ray diffraction analysis. This unique addition to the pentaterpene family represents the largest and the most complex molecule successfully assigned using computational approaches to predict accurately chemical shift values. Compounds 1 and 2 exhibited potent inhibitory activities (IC50 s <5 μM) of ATP-citrate lyase (ACL), a new drug target for the treatment of glycolipid metabolic disorders including hyperlipidemia. Validating this activity 1 effectively attenuated the de novo lipogenesis in HepG2 cells. These findings provide a new chemical class for developing potential therapeutic agents for ACL-related diseases with strong links to traditional medicines.
Collapse
Affiliation(s)
- Juan Xiong
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Peng-Jun Zhou
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Hao-Wen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Ting Huang
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yu-Hang He
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Ze-Yu Zhao
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, P. R. China
| | - Amar G Chittiboyina
- National Center for Natural Products Research, University of Mississippi, Oxford, MS, 38677, USA
| | - Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, Oxford, MS, 38677, USA
| | - Mark T Hamann
- Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, 29425-5700, USA
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Jin-Feng Hu
- School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
- School of Advanced Study, Taizhou University, Taizhou, 318000, Zhejiang, P. R. China
| |
Collapse
|
34
|
Forrestiacids A and B, Pentaterpene Inhibitors of ACL and Lipogenesis: Extending the Limits of Computational NMR Methods in the Structure Assignment of Complex Natural Products. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Sun CP, Chang YB, Wang C, Lv X, Zhou WY, Tian XG, Zhao WY, Ma XC. Bisfischoids A and B, dimeric ent-abietane-type diterpenoids with anti-inflammatory potential from Euphorbia fischeriana Steud. Bioorg Chem 2021; 116:105356. [PMID: 34560562 DOI: 10.1016/j.bioorg.2021.105356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 01/17/2023]
Abstract
Two undescribed ent-abietane-type diterpenoid dimers with nonacyclic backbone formed by intermolecular [4 + 2] cycloaddition into a spirocyclic skeleton, bisfischoids A (1) and B (2), along with a known one fischdiabietane A (3), were identified from Euphorbia fischeriana Steud. Their structures were elucidated by extensive spectroscopic analysis, ECD and NMR calculation combined with DP4+ probability analysis, as well as X-ray diffraction. The anti-inflammatory potential of dimers 1-3 were examined using their inhibitory effects on soluble epoxide hydrolase (sEH), which revealed that 1 and 2 exhibited promising activities with inhibition constant (Ki) of 3.20 and 1.95 μM, respectively. Further studies of molecular docking and molecular dynamics indicated that amino acid residue Tyr343 in the catalytic cavity of sEH was the key site for their inhibitory function.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yi-Bo Chang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xia Lv
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Wei-Yu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiang-Ge Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Wen-Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China; Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
36
|
Peng XR, Wang Q, Wang HR, Hu K, Xiong WY, Qiu MH. FPR2-based anti-inflammatory and anti-lipogenesis activities of novel meroterpenoid dimers from Ganoderma. Bioorg Chem 2021; 116:105338. [PMID: 34521045 DOI: 10.1016/j.bioorg.2021.105338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 09/04/2021] [Indexed: 12/31/2022]
Abstract
Four pairs of novel meroterpenoid dimers, (±)-applandimeric acids A-D (1-4) with an unprecedented spiro[furo[3,2-b]benzofuran-3,2'-indene] core were isolated from the fruiting bodies of Ganoderma applanatum. Their planar structures were unambiguously determined via extensive spectroscopic analysis. Their relative and absolute configurations were confirmed through calculated internuclear distance, coupling constant, 13C NMR with DP4 + analysis and electronic circular dichroism (ECD). Furthermore, the molecular docking-based method was used to evaluate their interaction with formyl peptide receptor 2 (FPR2) associated with inflammation. Interestingly, (±)-applandimeric acid D (4) can bond with FPR2 by some key hydrogen bonds. Furthermore, an in vitro bioassay verified that 4 can inhibit the expression of FPR2 with IC50 value of 7.93 μM. In addition, compared to the positive control LiCl (20 mM), 4 showed comparable anti-lipogenesis activity at the concentration of 20 μM. Meanwhile, 4 can suppress the protein levels of peroxisome proliferators-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-β (C/EBP-β), adipocyte fatty acid-binding protein 4 (FABP4), and fatty acid synthase (FAS) through activating AMP-activated protein kinase (AMPK) signaling pathway. Thus, our findings indicate that compound 4 could be a lead compound to treat obesity and obesity-related diseases by inhibiting lipid accumulation in adipocyte and alleviating inflammation.
Collapse
Affiliation(s)
- Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, People's Republic of China
| | - Qian Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, People's Republic of China; University of the Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Hui-Rong Wang
- Department of Biology, Southern University of Science and Technology Shenzhen, People's Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, People's Republic of China
| | - Wen-Yong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, People's Republic of China.
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, People's Republic of China.
| |
Collapse
|
37
|
Li XR, Yan BC, Hu K, He S, Sun HD, Zuo J, Puno PT. Spiro ent-Clerodane Dimers: Discovery and Green Approaches for a Scalable Biomimetic Synthesis. Org Lett 2021; 23:5647-5651. [PMID: 34170713 DOI: 10.1021/acs.orglett.1c01724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scospirosins A (1) and B (2), two unprecedented spiro ent-clerodane dimers with 6/6/10/6 and 6/6/6/6/6 ring systems, respectively, were isolated from Isodon scoparius. Their structures were unambiguously established by spectroscopic, X-ray crystallographic, and chemical approaches. A bioinspired protecting-group-free strategy for their synthesis was achieved on a gram scale and featured the application of green methods, including neat reaction, sensitized photooxygenation, and electrochemical oxidation. 2 exhibited selective immunosuppressive activity against the proliferation of T lymphocytes (IC50 = 1.42 μM).
Collapse
Affiliation(s)
- Xing-Ren Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bing-Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
38
|
Yang B, Wen G, Zhang Q, Hou M, He H, Gao S. Asymmetric Total Synthesis and Biosynthetic Implications of Perovskones, Hydrangenone, and Hydrangenone B. J Am Chem Soc 2021; 143:6370-6375. [PMID: 33886312 DOI: 10.1021/jacs.1c02674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perovskones and hydrangenones are a family of structurally complex triterpenoids that were mainly isolated from the genus Salvia medicinal plants. These isoprenoids exhibit a broad range of biological activities, such as antitumor and antiplasmodial activities. Here, we report the collective total synthesis of perovskone, perovskones C, D, F, hydrangenone, and hydrangenone B. The key strategies in this work include the following: (1) an asymmetric photoenolization/Diels-Alder reaction was developed to construct a tricyclic ring bearing three contiguous quaternary centers, which was used to build the core icetexane skeleton; (2) a bioinspired Diels-Alder reaction of perovskatone D with trans-α-ocimene was applied to stereospecifically generate perovskones; (3) late-stage oxidations and ring forming steps were developed to synthesize perovskones and hydrangenones. Our synthetic work suggests that (1) perovskatone D may serve as the precursor of the biosynthesis of perovskones and (2) the formation of hydrangenone and hydrangenone B, containing a five-membered D ring, may involve an oxidative ring cleavage and ring regeneration process.
Collapse
Affiliation(s)
- Baochao Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
| | - Guoen Wen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
| | - Quan Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
| | - Min Hou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
39
|
He J, Xu JK, Guo LB, Xia CY, Lian WW, Tian HY, Zhang J, Shi YX, Zhang WK. Fischdiabietane A, an Antitumoral Diterpenoid Dimer Featuring an Unprecedented Carbon Skeleton from Euphorbia fischeriana. J Org Chem 2021; 86:5894-5900. [PMID: 33793234 DOI: 10.1021/acs.joc.1c00305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fischdiabietane A (1), a novel asymmetric diterpenoid dimer with a unique nonacyclic 6/6/6/5/7/6/6/6/6 ring system possessing unprecedented 2-oxaspiro[4.5]decane-1-one and 2-oxabicyclo[3.2.2]nonane frameworks in D/E/F rings, was isolated from the roots of Euphorbia fischeriana. Its structure was determined by spectroscopic techniques, electronic circular dichroism calculations, and X-ray diffraction experiments. Notably, 1 is the first abietane-type [4 + 2] Diels-Alder dimer identified from nature. The IC50 of 1 against T47D cells was about sixfold higher than that of cisplatin (the positive control). Furthermore, 1 induced apoptosis in T47D cells through the activation of caspase-3 and the degradation of poly(ADP-ribose) polymerase.
Collapse
Affiliation(s)
- Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Lin-Bo Guo
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China.,Institute of Traditional Chinese Medicine and Natural Products & College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Wen-Wen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| | - Hai-Yan Tian
- Institute of Traditional Chinese Medicine and Natural Products & College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jia Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China.,School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Ying-Xue Shi
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China.,School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, People's Republic of China
| |
Collapse
|
40
|
Quijano-Quiñones RF, Guadarrama-Moreno J, Quesadas-Rojas M, Mena-Rejón GJ, Castro-Segura CS, Cáceres-Castillo D. The origin of the regiospecificity of acrolein dimerization. RSC Adv 2021; 11:7459-7465. [PMID: 35423251 PMCID: PMC8695078 DOI: 10.1039/d0ra10084f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/07/2021] [Indexed: 11/21/2022] Open
Abstract
Acrolein dimerization is a intriguing case since the reaction does not occur to form the electronically preferred regioisomeric adduct. Various explanations have been suggested to rationalize this experimental regioselectivity, however, none of these arguments had been convincing enough. In this work, the hetero Diels-Alder acrolein dimerization was theoretically investigated using DFT and MP2 methods. The influence of nucleophilic/electrophilic interactions and non-covalent interactions (NCI) in the regiospecificity of the reaction were analyzed. Our results show that the NCI at the transition state are the key factor controlling the regiospecificity in this reaction. Besides, we found that the choice of calculation method can have an effect on the prediction of the mechanism in the reaction, as all DFT methods forecast a one-step hetero Diels-Alder acrolein dimerization, while MP2 predicts a stepwise description for the lower energy reaction channel.
Collapse
Affiliation(s)
- Ramiro F Quijano-Quiñones
- Laboratorio de Química Teórica, Facultad de Química, Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | - Jareth Guadarrama-Moreno
- Laboratorio de Química Teórica, Facultad de Química, Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | - Mariana Quesadas-Rojas
- Posgrado en Ciencias del Mar y Limnología, UNAM Mexico
- Escuela Nacional de Educación Superior, UNAM Mérida Mexico
| | - Gonzalo J Mena-Rejón
- Laboratorio de Química Farmaceútica, Facultad de Química, Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | - Carolina S Castro-Segura
- Laboratorio de Química Teórica, Facultad de Química, Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| | - David Cáceres-Castillo
- Laboratorio de Química Farmaceútica, Facultad de Química, Universidad Autónoma de Yucatán Mérida Yucatán Mexico
| |
Collapse
|
41
|
Wu XD, Ding LF, Chen B, Li XN, Peng LY, Zhao QS. Cunlanceloic acids A–D: unprecedented labdane diterpenoid dimers with AChE inhibitory and cytotoxic activities from Cunninghamia lanceolata. Org Chem Front 2021. [DOI: 10.1039/d1qo00999k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four unprecedented labdane diterpenoid dimers with new carbon skeletons, cunlanceloic acids A–D (1–4), were isolated from the cones of Cunninghamia lanceolata.
Collapse
Affiliation(s)
- Xing-De Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Lin-Fen Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Bin Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Li-Yan Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
42
|
Peng X, Su H, Wang H, Hu G, Hu K, Zhou L, Qiu M. Applanmerotic acids A and B, two meroterpenoid dimers with an unprecedented polycyclic skeleton from Ganoderma applanatum that inhibit formyl peptide receptor 2. Org Chem Front 2021. [DOI: 10.1039/d1qo00294e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Applanmerotic acids A and B (1 and 2) with a polycyclic skeleton isolated from Ganoderma applantum showed anti-inflammatory activity via inhibiting the activation of FPR2.
Collapse
Affiliation(s)
- Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Science
- Kunming 650201
- People's Republic of China
| | - Haiguo Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Science
- Kunming 650201
- People's Republic of China
| | - Huirong Wang
- Department of Biology
- Southern University of Science and Technology
- Shenzhen
- China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Science
- Kunming 650201
- People's Republic of China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Science
- Kunming 650201
- People's Republic of China
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Science
- Kunming 650201
- People's Republic of China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Science
- Kunming 650201
- People's Republic of China
| |
Collapse
|
43
|
Quesadas-Rojas M, Mena-Rejon GJ, Castro-Segura CS, Cáceres-Castillo DR, Quijano-Quiñones RF. Theoretical insight into the on-water catalytic effect in the biogenesis of triterpene dimers: from one-step to two-step hetero Diels–Alder reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj04221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alternative pathway to the hetero Diels–Alder reaction for the biogenic origin of triterpene dimers is presented here. In this new pathway, the explicit water molecules take a fundamental role.
Collapse
Affiliation(s)
- Mariana Quesadas-Rojas
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico
- Escuela Nacional de Educación Superior, Universidad Nacional Autónoma de México, Mérida, Mexico
| | - Gonzalo J. Mena-Rejon
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | | | - David R. Cáceres-Castillo
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Ramiro F. Quijano-Quiñones
- Laboratorio de Química Teórica, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|