1
|
Wang D, Yao H, Ye J, Gao Y, Cong H, Yu B. Metal-Organic Frameworks (MOFs): Classification, Synthesis, Modification, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404350. [PMID: 39149999 DOI: 10.1002/smll.202404350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Metal-organic frameworks (MOFs) are a new variety of solid crystalline porous functional materials. As an extension of inorganic porous materials, it has made important progress in preparation and application. MOFs are widely used in various fields such as gas adsorption storage, drug delivery, sensing, and biological imaging due to their high specific surface area, porosity, adjustable pore size, abundant active sites, and functional modification by introducing groups. In this paper, the types of MOFs are classified, and the synthesis methods and functional modification mechanisms of MOFs materials are summarized. Finally, the application prospects and challenges of metal-organic framework materials in the biomedical field are discussed, hoping to promote their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Huanchen Yao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiashuo Ye
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yan Gao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Yan B, Li Y, He S. Aptamer-mediated therapeutic strategies provide a potential approach for cancer. Int Immunopharmacol 2024; 136:112356. [PMID: 38820957 DOI: 10.1016/j.intimp.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
3
|
Deng Y, Guo M, Zhou L, Huang Y, Srivastava S, Kumar A, Liu JQ. Prospects, advances and biological applications of MOF-based platform for the treatment of lung cancer. Biomater Sci 2024; 12:3725-3744. [PMID: 38958409 DOI: 10.1039/d4bm00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nowadays in our society, lung cancer is exhibiting a high mortality rate and threat to human health. Conventional diagnostic techniques used in the field of lung cancer often necessitate the use of extensive instrumentation, exhibit a tendency for false positives, and are not suitable for widespread early screening purposes. Conventional approaches to treat lung cancer primarily involve surgery, chemotherapy, and radiotherapy. However, these broad-spectrum treatments suffer from drawbacks such as imprecise targeting and significant side effects, which restrict their widespread use. Metal-organic frameworks (MOFs) have attracted significant attention in the diagnosis and treatment of lung cancer owing to their tunable electronic properties and structures and potential applications. These porous nanomaterials are formed through the intricate assembly of metal centers and organic ligands, resulting in highly versatile frameworks. Compared to traditional diagnostic and therapeutic modalities, MOFs can improve the sensitivity of lung cancer biomarker detection in the diagnosis of lung cancer. In terms of treatment, they can significantly reduce side effects and improve therapeutic efficacy. Hence, this perspective provides an overview concerning the advancements made in the field of MOFs as potent biosensors for lung cancer biomarkers. It also delves into the latest research dealing with the use of MOFs as carriers for drug delivery. Additionally, it explores the applications of MOFs in various therapeutic approaches, including chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy. Furthermore, this review comprehensively analyses potential applications of MOFs as biosensors in the field of lung cancer diagnosis and combines different therapeutic approaches aiming for enhanced therapeutic efficacy. It also presents a concise overview of the existing obstacles, aiming to pave the way for future advancements in lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yijun Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Manli Guo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Yong Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Shreya Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jian-Qiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
4
|
Hajfathalian M, Mossburg KJ, Radaic A, Woo KE, Jonnalagadda P, Kapila Y, Bollyky PL, Cormode DP. A review of recent advances in the use of complex metal nanostructures for biomedical applications from diagnosis to treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1959. [PMID: 38711134 PMCID: PMC11114100 DOI: 10.1002/wnan.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
Complex metal nanostructures represent an exceptional category of materials characterized by distinct morphologies and physicochemical properties. Nanostructures with shape anisotropies, such as nanorods, nanostars, nanocages, and nanoprisms, are particularly appealing due to their tunable surface plasmon resonances, controllable surface chemistries, and effective targeting capabilities. These complex nanostructures can absorb light in the near-infrared, enabling noteworthy applications in nanomedicine, molecular imaging, and biology. The engineering of targeting abilities through surface modifications involving ligands, antibodies, peptides, and other agents potentiates their effects. Recent years have witnessed the development of innovative structures with diverse compositions, expanding their applications in biomedicine. These applications encompass targeted imaging, surface-enhanced Raman spectroscopy, near-infrared II imaging, catalytic therapy, photothermal therapy, and cancer treatment. This review seeks to provide the nanomedicine community with a thorough and informative overview of the evolving landscape of complex metal nanoparticle research, with a specific emphasis on their roles in imaging, cancer therapy, infectious diseases, and biofilm treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Maryam Hajfathalian
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Katherine J. Mossburg
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Allan Radaic
- School of Dentistry, University of California Los Angeles
| | - Katherine E. Woo
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305
| | - Pallavi Jonnalagadda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Kapila
- School of Dentistry, University of California Los Angeles
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University
| | - David P. Cormode
- Department of Radiology, Department of Bioengineering, University of Pennsylvania
| |
Collapse
|
5
|
Zhou H, Zhu A, Wang C, Guo X, Ying Y, Wu Y, Liu X, Wang F, Wen Y, Yang H. Preparation of gold nanoparticles loaded MOF-199 for SERS detection of 5-hydroxyindole-3-acetic acid in serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123280. [PMID: 37619474 DOI: 10.1016/j.saa.2023.123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
5-Hydroxyindole-3-acetic acid (5-HIAA) is regarded as a biomarker for diagnosis of carcinoid tumors, and it is of great significance to developing a precision assay for monitoring 5-HIAA levels. In this work, gold nanoparticles loading on the surface of MOF-199 (Au NPs/MOF-199) is prepared to propose a surface enhanced Raman scattering (SERS) assay for 5-HIAA. When 4-mercaptopyridine (4-MPy) is used as a SERS probe, on Au NPs/MOF-199, limit of detection (LOD) at 10-9 mol/L can be achieved. In addition, Au NPs/MOF-199 substrate with good preparation reproducibility shows long-term storage stability at 4 °C. Under optimal condition, the Au NPs/MOF-199-based SERS method is applied to determine 5-HIAA in serum. The concentration linear range is from 10-9 to 10-5 mol/L and LOD is of 6.40 × 10-11 mol/L. Much importantly, Au NPs/MOF-199 substrate exhibits specific response toward 5-HIAA against other metabolites in the serum due to the capturing selectivity from porous MOF-199. The recoveries obtained on spiked human serum samples locate in the span from 94.30% to 106.00% with RSD of 4.01-7.43%. Au NPs/MOF-199-based SERS sensing strategy is a promising avenue for on-field monitoring biomedical species for clinic diagnosis purpose.
Collapse
Affiliation(s)
- Huimin Zhou
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Anni Zhu
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Caiyin Wang
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
6
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
7
|
Malekzadeh R, Mortezazadeh T, Abdulsahib WK, Babaye Abdollahi B, Hamblin MR, Mansoori B, Alsaikhan F, Zeng B. Nanoarchitecture-based photothermal ablation of cancer: A systematic review. ENVIRONMENTAL RESEARCH 2023; 236:116526. [PMID: 37487920 DOI: 10.1016/j.envres.2023.116526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
Photothermal therapy (PTT) is an emerging non-invasive method used in cancer treatment. In PTT, near-infrared laser light is absorbed by a chromophore and converted into heat within the tumor tissue. PTT for cancer usually combines a variety of interactive plasmonic nanomaterials with laser irradiation. PTT enjoys PT agents with high conversion efficiency to convert light into heat to destroy malignant tissue. In this review, published studies concerned with the use of nanoparticles (NPs) in PTT were collected by a systematic and comprehensive search of PubMed, Cochrane, Embase, and Scopus databases. Gold, silver and iron NPs were the most frequent choice in PTT. The use of surface modified NPs allowed selective delivery and led to a precise controlled increase in the local temperature. The presence of NPs during PTT can increase the reactive generation of oxygen species, damage the DNA and mitochondria, leading to cancer cell death mainly via apoptosis. Many studies recently used core-shell metal NPs, and the effects of the polymer coating or ligands targeted to specific cellular receptors in order to increase PTT efficiency were often reported. The effective parameters (NP type, size, concentration, coated polymers or attached ligands, exposure conditions, cell line or type, and cell death mechanisms) were investigated individually. With the advances in chemical synthesis technology, NPs with different shapes, sizes, and coatings can be prepared with desirable properties, to achieve multimodal cancer treatment with precision and specificity.
Collapse
Affiliation(s)
- Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Medical Radiation Science Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Behnaz Babaye Abdollahi
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Behzad Mansoori
- The Wistar Institute, Cellular and Molecular Oncogenesis Program, Philadelphia, PA, USA.
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China.
| |
Collapse
|
8
|
Hassan ZM, Guo W, Welle A, Oestreich R, Janiak C, Redel E. Formation of Gold Nanoclusters from Goldcarbonyl Chloride inside the Metal-Organic Framework HKUST-1. Molecules 2023; 28:molecules28062716. [PMID: 36985688 PMCID: PMC10051452 DOI: 10.3390/molecules28062716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Gas-phase infiltration of the carbonylchloridogold(I), Au(CO)Cl precursor into the pores of HKUST-1 ([Cu3(BTC)2(H2O)2], Cu-BTC) SURMOFs (surface-mounted metal-organic frameworks; BTC = benzene-1,3,5-tricarboxylate) leads to Au(CO)Cl decomposition within the MOF through hydrolysis with the aqua ligands on Cu. Small Aux clusters with an average atom number of x ≈ 5 are formed in the medium-sized pores of the HKUST-1 matrix. These gold nanoclusters are homogeneously distributed and crystallographically ordered, which was supported by simulations of the powder X-ray diffractometric characterization. Aux@HKUST-1 was further characterized by scanning electron microscopy (SEM) and infrared reflection absorption (IRRA) as well as Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES).
Collapse
Affiliation(s)
- Zeinab Mohamed Hassan
- Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wei Guo
- Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology, Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Robert Oestreich
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
- Correspondence: (C.J.); (E.R.)
| | - Engelbert Redel
- Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (C.J.); (E.R.)
| |
Collapse
|
9
|
Wen C, Li R, Chang X, Li N. Metal-Organic Frameworks-Based Optical Nanosensors for Analytical and Bioanalytical Applications. BIOSENSORS 2023; 13:128. [PMID: 36671963 PMCID: PMC9855937 DOI: 10.3390/bios13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs)-based optical nanoprobes for luminescence and surface-enhanced Raman spectroscopy (SERS) applications have been receiving tremendous attention. Every element in the MOF structure, including the metal nodes, the organic linkers, and the guest molecules, can be used as a source to build single/multi-emission signals for the intended analytical purposes. For SERS applications, the MOF can not only be used directly as a SERS substrate, but can also improve the stability and reproducibility of the metal-based substrates. Additionally, the porosity and large specific surface area give MOF a sieving effect and target molecule enrichment ability, both of which are helpful for improving detection selectivity and sensitivity. This mini-review summarizes the advances of MOF-based optical detection methods, including luminescence and SERS, and also provides perspectives on future efforts.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rongsheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Niu G, Gao F, Wang Y, Zhang J, Zhao L, Jiang Y. Bimetallic Nanomaterials: A Promising Nanoplatform for Multimodal Cancer Therapy. Molecules 2022; 27:8712. [PMID: 36557846 PMCID: PMC9783205 DOI: 10.3390/molecules27248712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Bimetallic nanomaterials (BMNs) composed of two different metal elements have certain mixing patterns and geometric structures, and they often have superior properties than monometallic nanomaterials. Bimetallic-based nanomaterials have been widely investigated and extensively used in many biomedical fields especially cancer therapy because of their unique morphology and structure, special physicochemical properties, excellent biocompatibility, and synergistic effect. However, most reviews focused on the application of BMNs in cancer diagnoses (sensing, and imaging) and rarely mentioned the application of the treatment of cancer. The purpose of this review is to provide a comprehensive perspective on the recent progress of BNMs as therapeutic agents. We first introduce and discuss the synthesis methods, intrinsic properties (size, morphology, and structure), and optical and catalytic properties relevant to cancer therapy. Then, we highlight the application of BMNs in cancer therapy (e.g., drug/gene delivery, radiotherapy, photothermal therapy, photodynamic therapy, enzyme-mediated tumor therapy, and multifunctional synergistic therapy). Finally, we put forward insights for the forthcoming in order to make more comprehensive use of BMNs and improve the medical system of cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Jie Zhang
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Li Zhao
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Yanyan Jiang
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| |
Collapse
|
11
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Tavakkoli Yaraki M, Tukova A, Wang Y. Emerging SERS biosensors for the analysis of cells and extracellular vesicles. NANOSCALE 2022; 14:15242-15268. [PMID: 36218172 DOI: 10.1039/d2nr03005e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cells and their derived extracellular vesicles (EVs) or exosomes contain unique molecular signatures that could be used as biomarkers for the detection of severe diseases such as cancer, as well as monitoring the treatment response. Revealing these molecular signatures requires developing non-invasive ultrasensitive tools to enable single molecule/cell-level detection using a small volume of sample with low signal-to-noise ratio background and multiplex capability. Surface-enhanced Raman scattering (SERS) can address the current limitations in studying cells and EVs through two main mechanisms: plasmon-enhanced electric field (the so-called electromagnetic mechanism (EM)), and chemical mechanism (CM). In this review, we first highlight these two SERS mechanisms and then discuss the nanomaterials that have been used to develop SERS biosensors based on each of the aforementioned mechanisms as well as the combination of these two mechanisms in order to take advantage of the synergic effect between electromagnetic enhancement and chemical enhancement. Then, we review the recent advances in designing label-aided and label-free SERS biosensors in both colloidal and planar systems to investigate the surface biomarkers on cancer cells and their derived EVs. Finally, we discuss perspectives of emerging SERS biosensors in future biomedical applications. We believe this review article will thus appeal to researchers in the field of nanobiotechnology including material sciences, biosensors, and biomedical fields.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
13
|
Zhang Y, Xue C, Xu Y, Cui S, Ganeev AA, Kistenev YV, Gubal A, Chuchina V, Jin H, Cui D. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection. NANO RESEARCH 2022; 16:2968-2979. [PMID: 36090613 PMCID: PMC9440655 DOI: 10.1007/s12274-022-4914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 05/28/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted widespread interest due to their unique and unprecedented advantages in microstructures and properties. Besides, surface-enhanced Raman scattering (SERS) technology has also rapidly developed into a powerful fingerprint spectroscopic technique that can provide rapid, non-invasive, non-destructive, and ultra-sensitive detection, even down to single molecular level. Consequently, a considerable amount of researchers combined MOFs with the SERS technique to further improve the sensing performance and broaden the applications of SERS substrates. Herein, representative synthesis strategies of MOFs to fabricate SERS-active substrates are summarized and their applications in ultra-sensitive biomedical trace detection are also reviewed. Besides, relative barriers, advantages, disadvantages, future trends, and prospects are particularly discussed to give guidance to relevant researchers.
Collapse
Affiliation(s)
- Yuna Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Cuili Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yuli Xu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shengsheng Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Alexander A. Ganeev
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Yury V. Kistenev
- Tomsk State University, Lenina Av. 36, Tomsk, Tomsk, 634050 Russia
| | - Anna Gubal
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Victoria Chuchina
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Han Jin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| |
Collapse
|
14
|
Wang Y, Zhang Y, Zhang X, Zhang Z, She J, Wu D, Gao W. High Drug-Loading Nanomedicines for Tumor Chemo-Photo Combination Therapy: Advances and Perspectives. Pharmaceutics 2022; 14:pharmaceutics14081735. [PMID: 36015361 PMCID: PMC9415722 DOI: 10.3390/pharmaceutics14081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
The combination of phototherapy and chemotherapy (chemo−photo combination therapy) is an excellent attempt for tumor treatment. The key requirement of this technology is the high drug-loading nanomedicines, which can load either chemotherapy drugs or phototherapy agents at the same nanomedicines and simultaneously deliver them to tumors, and play a multimode therapeutic role for tumor treatment. These nanomedicines have high drug-loading efficiency (>30%) and good tumor combination therapeutic effect with important clinical application potential. Although there are many reports of high drug-loading nanomedicines for tumor therapy at present, systematic analyses on those nanomedicines remain lacking and a comprehensive review is urgently needed. In this review, we systematically analyze the current status of developed high drug-loading nanomedicines for tumor chemo−photo combination therapy and summarize their types, methods, drug-loading properties, in vitro and in vivo applications. The shortcomings of the existing high drug-loading nanomedicines for tumor chemo−photo combination therapy and the possible prospective development direction are also discussed. We hope to attract more attention for researchers in different academic fields, provide new insights into the research of tumor therapy and drug delivery system and develop these nanomedicines as the useful tool for tumor chemo−photo combination therapy in the future.
Collapse
Affiliation(s)
- Ya Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Yujie Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Xiaojiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science & Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| |
Collapse
|
15
|
Cun JE, Fan X, Pan Q, Gao W, Luo K, He B, Pu Y. Copper-based metal-organic frameworks for biomedical applications. Adv Colloid Interface Sci 2022; 305:102686. [PMID: 35523098 DOI: 10.1016/j.cis.2022.102686] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of important porous, crystalline materials composed of metal ions (clusters) and organic ligands. Owing to the unique redox chemistry, photochemical and electrical property, and catalytic activity of Cu2+/+, copper-based MOFs (Cu-MOFs) have been recently and extensively explored in various biomedical fields. In this review, we first make a brief introduction to the synthesis of Cu-MOFs and their composites, and highlight the recent synthetic strategies of two most studied representatives, three-dimensional HKUST-1 and two-dimensional Cu-TCPP. The recent advances of Cu-MOFs in the applications of cancer treatment, bacterial inhibition, biosensing, biocatalysis, and wound healing are summarized and discussed. Furthermore, we propose a prospect of the future development of Cu-MOFs in biomedical fields and beyond.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
16
|
Guselnikova O, Lim H, Kim HJ, Kim SH, Gorbunova A, Eguchi M, Postnikov P, Nakanishi T, Asahi T, Na J, Yamauchi Y. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107182. [PMID: 35570326 DOI: 10.1002/smll.202107182] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
This article reviews recent fabrication methods for surface-enhanced Raman spectroscopy (SERS) substrates with a focus on advanced nanoarchitecture based on noble metals with special nanospaces (round tips, gaps, and porous spaces), nanolayered 2D materials, including hybridization with metallic nanostructures (NSs), and the contemporary repertoire of nanoarchitecturing with organic molecules. The use of SERS for multidisciplinary applications has been extensively investigated because the considerably enhanced signal intensity enables the detection of a very small number of molecules with molecular fingerprints. Nanoarchitecture strategies for the design of new NSs play a vital role in developing SERS substrates. In this review, recent achievements with respect to the special morphology of metallic NSs are discussed, and future directions are outlined for the development of available NSs with reproducible preparation and well-controlled nanoarchitecture. Nanolayered 2D materials are proposed for SERS applications as an alternative to the noble metals. The modern solutions to existing limitations for their applications are described together with the state-of-the-art in bio/environmental SERS sensing using 2D materials-based composites. To complement the existing toolbox of plasmonic inorganic NSs, hybridization with organic molecules is proposed to improve the stability of NSs and selectivity of SERS sensing by hybridizing with small or large organic molecules.
Collapse
Affiliation(s)
- Olga Guselnikova
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Sung Hyun Kim
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Alina Gorbunova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Takuya Nakanishi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Toru Asahi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo, 58656, Republic of Korea
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| |
Collapse
|
17
|
Li SS, Wang AJ, Yuan PX, Mei LP, Zhang L, Feng JJ. Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy. Chem Sci 2022; 13:5505-5530. [PMID: 35694355 PMCID: PMC9116289 DOI: 10.1039/d2sc00460g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Heterometallic nanomaterials (HMNMs) display superior physicochemical properties and stability to monometallic counterparts, accompanied by wider applications in the fields of catalysis, sensing, imaging, and therapy due to synergistic effects between multi-metals in HMNMs. So far, most reviews have mainly concentrated on introduction of their preparation approaches, morphology control and applications in catalysis, assay of heavy metal ions, and antimicrobial activity. Therefore, it is very important to summarize the latest investigations of activity modulation of HMNMs and their recent applications in sensing, imaging and therapy. Taking the above into consideration, we briefly underline appealing chemical/physical properties of HMNMs chiefly tailored through the sizes, shapes, compositions, structures and surface modification. Then, we particularly emphasize their widespread applications in sensing of targets (e.g. metal ions, small molecules, proteins, nucleic acids, and cancer cells), imaging (frequently involving photoluminescence, fluorescence, Raman, electrochemiluminescence, magnetic resonance, X-ray computed tomography, photoacoustic imaging, etc.), and therapy (e.g. radiotherapy, chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy). Finally, we present an outlook on their forthcoming directions. This timely review would be of great significance for attracting researchers from different disciplines in developing novel HMNMs.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
18
|
Advanced sample preparation techniques for rapid surface-enhanced Raman spectroscopy analysis of complex samples. J Chromatogr A 2022; 1675:463181. [DOI: 10.1016/j.chroma.2022.463181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
|
19
|
Yilmaz H, Yilmaz D, Taskin IC, Culha M. Pharmaceutical applications of a nanospectroscopic technique: Surface-enhanced Raman spectroscopy. Adv Drug Deliv Rev 2022; 184:114184. [PMID: 35306126 DOI: 10.1016/j.addr.2022.114184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/12/2022] [Accepted: 03/06/2022] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a very sensitive technique offering unique opportunities for detection and identification of molecules and molecular structures at extremely low concentrations even in complex sample matrixes. Since a nanostructured noble metal surface is required for the enhancement of Raman scattering, the acquired spectral information naturally originates from nanometer size domains making it a nanospectroscopic technique by breaking the diffraction limit of light. In this review, first Raman spectroscopy, its comparison to other related techniques, its modes and instrumentation are briefly introduced. Then, the SERS mechanism, substrates and the parameters influencing a SERS experiment are discussed. Finally, its applications in pharmaceuticals including drug discovery, drug metabolism, multifunctional chemo-photothermal-therapy-delivery-release-imaging, drug stability and drug/metabolite detection in complex biological samples are summarized and elaborated.
Collapse
|
20
|
Wen C, Wang L, Liu L, Shen XC, Chen H. Surface-enhanced Raman probes based on gold nanomaterials for in vivo diagnosis and imaging. Chem Asian J 2022; 17:e202200014. [PMID: 35178878 DOI: 10.1002/asia.202200014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has received considerable attention from researchers due to its high molecular specificity, high sensitivity, non-invasive and multiplexing. Recently, various metal substrates have been exploited for SERS analysis and imaging. Among them, gold nanomaterials are important SERS substrates with outstanding surface plasmon resonance effects, structural adjustability and good biocompatibility, making them widely used in biomedical diagnosis and clinical fields. In this minireview, we discuss the latest progress about the application of gold-based nanomaterials as SERS probes in biomedical research, primarily for in vivo disease diagnosis and imaging. This review mainly includes the basic shapes and morphologies of gold based SERS probes, such as gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanostars (AuNSs), as well as other gold nanostructures. Finally, a brief outlook for the future development of SERS technique in the context of efficient diagnostics and therapy guidance is provided. We hope that this minireview will facilitate the design and future development of Surface-enhanced Raman probes based on gold nanomaterials.
Collapse
Affiliation(s)
| | | | - Li Liu
- Guangxi Normal University, chemistry, CHINA
| | | | - Hua Chen
- Guangxi Normal University, school of chemistry, 15 Yucai Road, 541004, Guilin, CHINA
| |
Collapse
|
21
|
Akakuru OU, Zhang Z, Iqbal MZ, Zhu C, Zhang Y, Wu A. Chemotherapeutic nanomaterials in tumor boundary delineation: Prospects for effective tumor treatment. Acta Pharm Sin B 2022; 12:2640-2657. [PMID: 35755279 PMCID: PMC9214073 DOI: 10.1016/j.apsb.2022.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022] Open
Abstract
Accurately delineating tumor boundaries is key to predicting survival rates of cancer patients and assessing response of tumor microenvironment to various therapeutic techniques such as chemotherapy and radiotherapy. This review discusses various strategies that have been deployed to accurately delineate tumor boundaries with particular emphasis on the potential of chemotherapeutic nanomaterials in tumor boundary delineation. It also compiles the types of tumors that have been successfully delineated by currently available strategies. Finally, the challenges that still abound in accurate tumor boundary delineation are presented alongside possible perspective strategies to either ameliorate or solve the problems. It is expected that the information communicated herein will form the first compendious baseline information on tumor boundary delineation with chemotherapeutic nanomaterials and provide useful insights into future possible paths to advancing current available tumor boundary delineation approaches to achieve efficacious tumor therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Zhoujing Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - M. Zubair Iqbal
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengjie Zhu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yewei Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- Corresponding author.
| |
Collapse
|
22
|
Liu M, Wang L, Lo Y, Shiu SCC, Kinghorn AB, Tanner JA. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022; 11:159. [PMID: 35011722 PMCID: PMC8750369 DOI: 10.3390/cells11010159] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
A wide variety of nanomaterials have emerged in recent years with advantageous properties for a plethora of therapeutic and diagnostic applications. Such applications include drug delivery, imaging, anti-cancer therapy and radiotherapy. There is a critical need for further components which can facilitate therapeutic targeting, augment their physicochemical properties, or broaden their theranostic applications. Aptamers are single-stranded nucleic acids which have been selected or evolved to bind specifically to molecules, surfaces, or cells. Aptamers can also act as direct biologic therapeutics, or in imaging and diagnostics. There is a rich field of discovery at the interdisciplinary interface between nanomaterials and aptamer science that has significant potential across biomedicine. Herein, we review recent progress in aptamer-enabled materials and discuss pending challenges for their future biomedical application.
Collapse
Affiliation(s)
- Mengping Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Lin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Young Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Andrew B. Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
| | - Julian A. Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.L.); (L.W.); (Y.L.); (S.C.-C.S.); (A.B.K.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
23
|
Andreiuk B, Nicolson F, Clark LM, Panikkanvalappil SR, Kenry, Rashidian M, Harmsen S, Kircher MF. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022; 6:10-30. [PMID: 34976578 PMCID: PMC8671966 DOI: 10.7150/ntno.61244] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) nanotags hold a unique place among bioimaging contrast agents due to their fingerprint-like spectra, which provide one of the highest degrees of detection specificity. However, in order to achieve a sufficiently high signal intensity, targeting capabilities, and biocompatibility, all components of nanotags must be rationally designed and tailored to a specific application. Design parameters include fine-tuning the properties of the plasmonic core as well as optimizing the choice of Raman reporter molecule, surface coating, and targeting moieties for the intended application. This review introduces readers to the principles of SERS nanotag design and discusses both established and emerging protocols of their synthesis, with a specific focus on the construction of SERS nanotags in the context of bioimaging and theranostics.
Collapse
Affiliation(s)
- Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise M. Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Stefan Harmsen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 022115, USA
| |
Collapse
|
24
|
Chen Y, Yu F, Wang Y, Liu W, Ye J, Xiao J, Liu X, Jiang H, Wang X. Recent Advances in Engineered Noble Metal Nanomaterials as a Surface-Enhanced Raman Scattering Active Platform for Cancer Diagnostics. J Biomed Nanotechnol 2022; 18:1-23. [PMID: 35180897 DOI: 10.1166/jbn.2022.3246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, noble metal nanomaterials have been extensively studied in the fields of biosensing, environmental catalysis, and cancer diagnosis and treatment, due to their excellent electrical conductivity, high surface area, and individual physical and optical properties. Early research on the surface-enhanced Raman scattering (SERS) effect was focused on the cognition of the SERS phenomenon and enhancing its sensitivity for single-molecule detection. With the development of nanomaterials and nanotechnology, the advances and applications based on SERS substrates have been accelerated. Among them, noble metal nanomaterials are mainly used as SERS-active substrates to enhance SERS signals owing to their compelling surface plasmon resonance (SPR) properties. This review provides recent advances, perspectives, and challenges in SERS assays based on engineered noble metal nanomaterials for early cancer diagnosis.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fangfang Yu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Ye
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiang Xiao
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
25
|
Pan J, He Q, Lao Z, Zou Y, Su J, Li Q, Chen Z, Cui X, Cai Y, Zhao S. A bifunctional immunosensor based on osmium nano-hydrangeas as a catalytic chromogenic and tinctorial signal output for folic acid detection. Analyst 2021; 147:55-65. [PMID: 34821249 DOI: 10.1039/d1an01432c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a neglected member of the platinum group elements, osmium, the metal with the highest density in the earth, is very suitable for the preparation of a peroxidase with high catalytic activity and stability, and can also be associated with the development of a sensor. In this study, we accessed Os nano-hydrangeas (OsNHs) with one-pot synthesis and utilized them in a bifunctional immunosensor that can present both catalytic chromogenic and tinctorial signal for nanozyme-linked immunosorbent assay (NLISA) and lateral flow immunoassay (LFIA) for use in folic acid (FA) detection. In the OsNHs-NLISA, the linear range is from 9.42 to 167.53 ng mL-1. The limit of detection (LOD) is 4.03 ng mL-1 and the IC50 value is 39.73 ng mL-1. In OsNHs-LFIA, the visual cut-off value and limit of detection (v-LOD) are 100 ng mL-1 and 0.01 ng mL-1, respectively. Additionally, the outcome from the specificity and spiked sample analysis offered recovery from the spiked milk powder sample ranging from 93.9 to 103.6% with a coefficient of variation under 4.9%, compared with UPLC-MS/MS for a correlation of R2 = 0.999 and admirable validation. The promising application of the OsNHs can also be used in other bioprobes, and this bifunctional immunosensor analysis mode is suitable for diversified analytes.
Collapse
Affiliation(s)
- Junkang Pan
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Qiyi He
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China. .,Department of Chemical Engineering and Technology, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhiting Lao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yikui Zou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Jingyi Su
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Qinglan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Zekai Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
26
|
Ge X, Wong R, Anisa A, Ma S. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2021; 281:121322. [PMID: 34959029 DOI: 10.1016/j.biomaterials.2021.121322] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Albeit metal-organic framework (MOF) composites have been extensively explored, reducing the size and dimensions of various contents within the composition, to the nanoscale regime, has recently presented unique opportunities for enhanced properties with the formation of MOF-based nanocomposites. Many distinctive strategies have been used to fabricate these nanocomposites such as through the introduction of nanoparticles (NPs) into a MOF precursor solution or vice versa to achieve a core-shell or heterostructure configuration. As such, MOF-based nanocomposites offer seemingly limitless possibilities and promising solutions for the vast range of applications across biomedical disciplines especially for improving in vivo implementation. In this review, we focus on the recent development of MOF-based nanocomposites, outline their classification according to the type of integrations (NPs, coating materials, and different MOF-derived nanocomposites), and direct special attention towards the various approaches and strategies employed to construct these nanocomposites for their prospective utilization in biomedical applications including biomimetic enzymes and photo, chemo, sonodynamic, starvation and hyperthermia therapies. Lastly, our work aims to highlight the exciting potential as well as the challenges of MOF-based nanocomposites to help guide future research as well as to contribute to the progress of MOF-based nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Raymond Wong
- Department of Cell and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, United States
| | - Anee Anisa
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States.
| |
Collapse
|
27
|
Recent advances in Cu(II)/Cu(I)-MOFs based nano-platforms for developing new nano-medicines. J Inorg Biochem 2021; 225:111599. [PMID: 34507123 DOI: 10.1016/j.jinorgbio.2021.111599] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022]
Abstract
With increasing world population, life-span of humans and spread of viruses, myriad of diseases in human beings are becoming more and more common. Because of the interesting chemical and framework versatility and porosity of metal organic frameworks (MOFs) they find application in varied areas viz. catalysis, sensing, metal ion/gas storage, chemical separation, drug delivery, bio-imaging. This subclass of coordination polymers having interesting three-dimensional framework exhibits inordinate potential and hence may find application in treatment and cure of cancer, diabetes Alzheimer's and other diseases. The presented review focuses on the diverse mechanism of action, unique biological activity and advantages of copper-based metal organic framework (MOF) nanomaterials in medicine. Also, different methods used in the treatment of cancer and other diseases have been presented and the applications as well as efficacy of copper MOFs have been reviewed and discussed. Eventually, the current-status and potential of copper based MOFs in the field of anti-inflammatory, anti-bacterial and anti-cancer therapy as well as further investigations going on for this class of MOF-based multifunctional nanostructures in for developing new nano-medicines have been presented.
Collapse
|
28
|
Wang Z, Sun Q, Liu B, Kuang Y, Gulzar A, He F, Gai S, Yang P, Lin J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213945] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
29
|
Fu J, Lai H, Zhang Z, Li G. UiO-66 metal-organic frameworks/gold nanoparticles based substrates for SERS analysis of food samples. Anal Chim Acta 2021; 1161:338464. [PMID: 33896560 DOI: 10.1016/j.aca.2021.338464] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023]
Abstract
Recently, metal-organic frameworks (MOFs) based substrates have shown great potential for the quantitative analysis of food samples by surface-enhanced Raman scattering (SERS) due to their unique properties. Herein, we developed two UiO-66 MOFs/gold nanoparticles (AuNPs) based substrates by self-assembly, including UiO-66/AuNPs suspension substrate and UiO-66(NH2)/AuNPs/Nylon-66 flexible membrane substrate, for quantitative analysis of complex food samples by SERS. UiO-66/AuNPs suspension substrate was prepared for SERS-based determination of a carcinogenic heterocyclic amine in barbecue meat. UiO-66(NH2)/AuNPs/Nylon-66 membrane substrate was fabricated for the simultaneous separation, enrichment, and in situ analysis of Sudan Red 7B in chilli products. The heterocyclic amine and Sudan dye in real samples could be detected and quantified with the recoveries of 82.3-110% and 84.5-114% and relative standard deviations (RSDs) of 3.1-11.0% and 1.9-5.6% (n = 3) by use of these two substrates, respectively. These two UiO-66/AuNPs based substrates combined molecular enrichment and SERS activity, achieving excellent analytical accuracy and widening SERS application in practical food safety analysis.
Collapse
Affiliation(s)
- Jingtai Fu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huasheng Lai
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
30
|
|
31
|
Wang P, Sun Y, Li X, Wang L, Xu Y, Li G. Recent Advances in Metal Organic Frameworks Based Surface Enhanced Raman Scattering Substrates: Synthesis and Applications. Molecules 2021; 26:molecules26010209. [PMID: 33401623 PMCID: PMC7794681 DOI: 10.3390/molecules26010209] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Metal-organic frameworks (MOFs) are supramolecular nanomaterials, in which metal ions or clusters are connected by organic ligands to form crystalline lattices with highly ordered periodic porous network structure. MOFs have been widely applied in various fields, such as catalyst, sample preparation, and sensing. In recent years, MOFs based surface enhanced Raman scattering (SERS) substrates have attracted much attention since MOFs can largely improve the performance of metallic SERS substrates toward target enrichment and signal enhancement. MOFs have been exploited in SERS analysis to tackle some challenges that bare metal substrates cannot achieve. Combination of MOFs and SERS improved the sensitivity of traditional SERS analysis and extended the application scope of SERS. With the increasing exploration of MOFs based SERS substrates, there is a great demand to review the advances in these researches. Herein, this review concentrated on summarizing the preparation and applications of MOFs based SERS substrates. Representative researches were discussed to better understand the property of MOFs based SERS substrates. The advantages of MOFs based SERS substrates were highlighted, as well as their limitations. In addition, the challenges, opportunities, and future trends in MOFs based SERS analysis were tentatively discussed.
Collapse
|
32
|
Guo C, Ma X, Wang B. Metal-organic Frameworks-based Composites and Their Photothermal Applications. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Dhakshinamoorthy A, Navalón S, Asiri AM, Garcia H. Gold‐Nanoparticle‐Decorated Metal‐Organic Frameworks for Anticancer Therapy. ChemMedChem 2020; 15:2236-2256. [DOI: 10.1002/cmdc.202000562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Sergio Navalón
- Departamento de Química and Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València Av. De los Naranjos s/n 46022 Valencia Spain
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Hermenegildo Garcia
- Departamento de Química and Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València Av. De los Naranjos s/n 46022 Valencia Spain
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
34
|
Sun J, Liu Y, Zhu X, Liao X, Wang L, Yuan J, Zhou J. Endogenous H 2S-Activable Liposomal Nanoplatform for Synergistic Colorectal Tumor Ablation at Mild Apparent Temperature. ACS APPLIED BIO MATERIALS 2020; 3:6680-6687. [PMID: 35019333 DOI: 10.1021/acsabm.0c00535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photoinduced hyperthermia possesses great potential in photothermal therapy and thermal-responsive chemotherapy of tumors. However, traditional thermal-triggered drug release requires high temperature, which results in unpleasant activation of thermal-induced cellular self-protection. In this work, a Cu-complex modified and drug-loaded liposomal nanoplatform was constructed for endogenous H2S-activated synergistic ablation of colorectal tumors. In response to H2S, the incorporated Cu-complex contributed to the formation of semiconductor CuS on the surface of the as-designed liposomal nanoplatform, which led to local heating under near-infrared (NIR) laser irradiation to achieve simultaneous photothermal therapy and drug release. It is noteworthy that although the drug release occurred at a mild apparent temperature, it was actually triggered by the high eigen temperature on the surface of the liposomal nanoplatform. Therefore, efficient and synergistic photothermal and chemotherapy was achieved under mild apparent temperatures. This work provides insights into achieving selective and bioactivated photothermal therapy and therefore thermal-controlled drug release without using excessive hyperthermia.
Collapse
Affiliation(s)
- Jingyan Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science and CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xianquan Liao
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Lu Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Jing Yuan
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
35
|
Panikar SS, Banu N, Escobar ER, García GR, Cervantes-Martínez J, Villegas TC, Salas P, De la Rosa E. Stealth modified bottom up SERS substrates for label-free therapeutic drug monitoring of doxorubicin in blood serum. Talanta 2020; 218:121138. [DOI: 10.1016/j.talanta.2020.121138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/26/2022]
|
36
|
Huang C, Li A, Chen X, Wang T. Understanding the Role of Metal-Organic Frameworks in Surface-Enhanced Raman Scattering Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004802. [PMID: 32985111 DOI: 10.1002/smll.202004802] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/18/2020] [Indexed: 05/14/2023]
Abstract
Metal-organic frameworks (MOFs), built from organic linkers and metal ions/clusters, have emerged as highly promising materials for wide applications. Combining highly porous crystalline MOFs with the surface-enhanced Raman scattering (SERS) technique can achieve unprecedented advantages of high selectivity, high sensitivity, and expedience in analysis and detection. In this critical review, the aim is to present a comprehensive review of recent advances in understanding of the roles of MOFs in MOF-SERS systems, particularly their structure-to-property correlation. Key examples are selected from representative literature to illustrate critical concepts and the MOF-based property-dependent applications are particularly emphasized. Finally, the barriers, future trends, and prospects for further advances in MOF-SERS platforms are also discussed.
Collapse
Affiliation(s)
- Chuanhui Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
| | - Ailin Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun, North First Street, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
37
|
Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213212] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Chen X, Tong R, Liu B, Liu H, Feng X, Ding S, Lei Q, Tang G, Wu J, Fang W. Duo of (-)-epigallocatechin-3-gallate and doxorubicin loaded by polydopamine coating ZIF-8 in the regulation of autophagy for chemo-photothermal synergistic therapy. Biomater Sci 2020; 8:1380-1393. [PMID: 31916560 DOI: 10.1039/c9bm01614g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To achieve highly systemic therapeutic efficacy, chemotherapy is combined with photothermal therapy for chemo-photothermal synergistic therapy; however, this strategy suffers from high toxicity and unsatisfactory sensitivity for cancer cells. Herein, we developed a pH- and photothermal-responsive zeolitic imidazolate framework (ZIF-8) compound for loading a dual-drug in the tumor site and improving their curative effects. Since autophagy always accompanies tumor progression and metastasis, there is an unmet need for an anticancer treatment related to the regulation of autophagy. Green tea polyphenols, namely, (-)-epigallocatechin-3-gallate (EGCG) and doxorubicin (DOX), both of which exhibit anticancer activity, were dual-loaded via polydopamine (PDA) coating ZIF-8 (EGCG@ZIF-PDA-PEG-DOX, EZPPD for short) through hierarchical self-assembly. PDA could transfer photothermal energy to increase the temperature under near-infrared (NIR) laser irradiation. Due to its pH-response, EZPPD released EGCG and DOX in the tumor microenvironment, wherein the temperature increased with the help of PDA and NIR laser irradiation. The duo of DOX and EGCG induced autophagic flux and accelerated the formation of autophagosomes. In a mouse HeLa tumor model, photothermal-chemotherapy could ablate the tumor with a significant synergistic effect and potentiate the anticancer efficacy. Thus, the results indicate that EZPPD renders the key traits of a clinically promising candidate to address the challenges associated with synergistic chemotherapy and photothermal utilization in antitumor therapy.
Collapse
Affiliation(s)
- Xuerui Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen Z, Tu Y, Zhang D, Liu C, Zhou Y, Li X, Wu X, Liu R. A thermosensitive nanoplatform for photoacoustic imaging and NIR light triggered chemo-photothermal therapy. Biomater Sci 2020; 8:4299-4307. [DOI: 10.1039/d0bm00810a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A thermosensitive nanoplatform CDTSL achieves NIR light controlled drug release and can be applied for photoacoustic imaging and chemo-photothermal therapy.
Collapse
Affiliation(s)
- Zikang Chen
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| | - Yinuo Tu
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| | - Chuang Liu
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Yuping Zhou
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| | - Xiang Li
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Xu Wu
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| |
Collapse
|
40
|
Sun W, Li S, Tang G, Luo Y, Ma S, Sun S, Ren J, Gong Y, Xie C. Recent Progress of Nanoscale Metal-Organic Frameworks in Cancer Theranostics and the Challenges of Their Clinical Application. Int J Nanomedicine 2019; 14:10195-10207. [PMID: 32099352 PMCID: PMC6997222 DOI: 10.2147/ijn.s230524] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
The growing incidence of cancer raises an urgent need to develop effective diagnostic and therapeutic strategies. With the rapid development of nanomedicine, nanoscale metal-organic frameworks (NMOFs) presented promising potential in various biomedical applications in the last 2 decades, especially in cancer theranostics. Due to the unique features of NMOFs, including structural diversities, enormous porosity, multifunctionality and biocompatibility, they have been widely used to deliver imaging contrast agents and therapeutic drugs. Moreover, multiple types of contrast agents, anti-cancer drugs and targeting ligands could be co-delivered through one single NMOF to enable combination therapy. Co-delivering system using NMOFs helped to avoid multidrug resistance, to reduce adverse effects, to achieve imaging-guided precise therapy and to enhance anti-cancer efficacy. This review summarized the recent research advances on the application of NMOFs in biomedical imaging and cancer treatments in the last few years. The current challenges that impeding their translation to clinical practices and the perspectives for their future applications were also highlighted and discussed.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
41
|
|
42
|
“One-step” synthesis of a bifunctional nanocomposite for separation and enrichment of phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1130-1131:121833. [DOI: 10.1016/j.jchromb.2019.121833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 11/20/2022]
|
43
|
Singh R. Nanotechnology based therapeutic application in cancer diagnosis and therapy. 3 Biotech 2019; 9:415. [PMID: 31696020 PMCID: PMC6811486 DOI: 10.1007/s13205-019-1940-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the lack of early diagnosis, cancer remains as one of the leading cause of human mortality. Inability to translate research into clinical trials and also inability of chemotherapeutics delivery to targeted tumor sites are major drawbacks in cancer therapeutics. With the emergence of nanomedicine, several nanoprobes (conjugated with targeting ligands and chemotherapeutic drugs) are developed. It can interact with biological system and thus sense and monitor the biological events with high efficiency and accuracy along with therapy application. Nanoparticles like gold and iron oxide are frequently used in the computed tomography and magnetic resonance imaging applications, respectively. Moreover, enzymatic activity of gold and iron oxide nanoparticles enables the visible colorimetric diagnostic of cancer cells, whereas, fluorescence property of quantum dots and upconversion nanoparticles helps in in vivo imaging application. Other than this, drug conjugation with nanoparticles also reduces the systemic toxic effect of chemotherapeutic drugs. Due to their several unique intrinsic properties, nanoparticles itself can also be employed as therapeutics in cancer treatment by photothermal therapy (PTT) and photodynamic therapy (PDT). Thus, the main focus of this review is to emphasize on current progress in diagnostic and therapeutic application of nanoprobes in cancer.
Collapse
Affiliation(s)
- Ragini Singh
- School of Agriculture Science, Liaocheng University, No. 1 Hunan Road, Liaocheng, Shandong China
| |
Collapse
|
44
|
Yu L, Lu F, Huang X, Liu Y, Li M, Pan H, Wu L, Huang Y, Hu Z. Facile Interface Design Strategy for Improving the Uvioresistant and Self-Healing Properties of Poly( p-phenylene benzobisoxazole) Fibers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39292-39303. [PMID: 31569942 DOI: 10.1021/acsami.9b11595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene-based coaxial hybrid fibers (CHFs) with a typical core-sheath structure have attracted extensive attention in recent years because of their potentially excellent mechanical performance. However, direct introduction of the micrometer-thick graphene stack structure on the extremely inert fiber surface with little negative effect has barely been reported so far and is still a great challenge. In the present work, a facile and cost-efficient dimensionally confined hydrothermal reduction, static adsorption, and thermal-assisted shrinkage sequential treatment strategy was developed to fabricate one-dimensional CHFs. The large-scale reduced graphene oxide-metal organic framework (RGO-UIO-66) hybrid layer and poly(p-phenylene benzobisoxazole) (PBO) fiber serve as the sheath part and core part, respectively, and the final product is denoted as PGU-CHFs. The experimental results confirmed that the prepared monofilament composite with thermoplastic polyurethane (PGU-CHF-TPU) exhibited an excellent and stable intrinsically self-healing efficiency (about 85%) over 5 cycles and an extraordinary uvioresistant performance (increased by 128%) compared to those of pristine PBO fibers after 288 h UV aging irradiation. Moreover, the anti-ultraviolet (UV) properties of PGU-CHFs at 96 h are basically at the optimum level among most of the reported literatures at present after comparison. The highly near-infrared photothermal conversion ability and stability of micrometer-thick RGO stack structure and the synergism of RGO-UIO-66 hybrid sheath layer including UV adsorption, shielding attenuation, and reflection are responsible for the satisfactorily interfacial self-healing efficiency and UV-resistance properties of PGU-CHFs, respectively. Considering the diversities and versatilities of RGO and MOFs, the proposed fabrication strategy will promisingly endow PBO fibers with great application potential in the other fields such as fiber-based sensors and smart fibers.
Collapse
Affiliation(s)
- Long Yu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Fei Lu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Xinghao Huang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Yingying Liu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Meiyu Li
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Haoze Pan
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Leiyu Wu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| | - Zhen Hu
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|
45
|
Wang HX, Zhao YW, Li Z, Liu BS, Zhang D. Development and Application of Aptamer-Based Surface-Enhanced Raman Spectroscopy Sensors in Quantitative Analysis and Biotherapy. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3806. [PMID: 31484403 PMCID: PMC6749344 DOI: 10.3390/s19173806] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/16/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is one of the most special and important Raman techniques. An apparent Raman signal can be observed when the target molecules are absorbed onto the surface of the SERS substrates, especially on the "hot spots" of the substrates. Early research focused on exploring the highly active SERS substrates and their detection applications in label-free SERS technology. However, it is a great challenge to use these label-free SERS sensors for detecting hydrophobic or non-polar molecules, especially in complex systems or at low concentrations. Therefore, antibodies, aptamers, and antimicrobial peptides have been used to effectively improve the target selectivity and meet the analysis requirements. Among these selective elements, aptamers are easy to use for synthesis and modifications, and their stability, affinity and specificity are extremely good; they have been successfully used in a variety of testing areas. The combination of SERS detection technology and aptamer recognition ability not only improved the selection accuracy of target molecules, but also improved the sensitivity of the analysis. Variations of aptamer-based SERS sensors have been developed and have achieved satisfactory results in the analysis of small molecules, pathogenic microorganism, mycotoxins, tumor marker and other functional molecules, as well as in successful photothermal therapy of tumors. Herein, we present the latest advances of the aptamer-based SERS sensors, as well as the assembling sensing platforms and the strategies for signal amplification. Furthermore, the existing problems and potential trends of the aptamer-based SERS sensors are discussed.
Collapse
Affiliation(s)
- Hai-Xia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu-Wen Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bo-Shi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|