1
|
Roh J, Cho YH, Ahn DJ. Sustainable colorimetric/luminescent sensors enabled by armored lipid nanoparticles. NANO CONVERGENCE 2022; 9:42. [PMID: 36178553 PMCID: PMC9525522 DOI: 10.1186/s40580-022-00335-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/19/2022] [Indexed: 05/31/2023]
Abstract
In this study, we developed a highly stable polymeric vesicle using a nanosilica-armor membrane to achieve a sustainable colorimetric/luminescent response. The silica armor can be grown directly as ~ 5 nm spherical nanoparticles on the surface of the diacetylene (DA) vesicle with liposomal structure. This can be accomplished via the modified Stöber reaction in pure water on a layer of amine linkers deposited on the vesicles. Once formed, the structural stability of the DA vesicles dramatically increased and remained so even in a dried powder form that could be stored for a period of approximately 6 months. Then, redispersed in water, the armored vesicles did not agglomerate because of the electric charge of the silica armor. After polymerization, the polydiacetylene (PDA) vesicles maintained an average of 87.4% their sensing capabilities compared to unstored vesicles. Furthermore, the silica membrane thickness can be controlled by reiteration of the electrostatic layer-by-layer approach and the direct hydrolysis of silica. As the number of silica armor membranes increases, the passage of the stimuli passing through the membranes becomes longer. Consequently, three layers of silica armor gave the PDA vesicles size-selective recognition to filter out external stimuli. These discoveries are expected to have large-scale effects in the chemo- and biosensor fields by applying protective layers to organic nanomaterials.
Collapse
Affiliation(s)
- Jinkyu Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of South Korea
| | - Yong Ho Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of South Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of South Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of South Korea.
| |
Collapse
|
2
|
Wireless portable bioelectronic nose device for multiplex monitoring toward food freshness/spoilage. Biosens Bioelectron 2022; 215:114551. [PMID: 35839622 DOI: 10.1016/j.bios.2022.114551] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
Monitoring food freshness/spoilage is important to ensure food quality and safety. Current methods of food quality monitoring are mostly time-consuming and labor intensive processes that require massive analytical equipment. In this study, we developed a portable bioelectronic nose (BE-nose) integrated with trace amine-associated receptor (TAAR) nanodiscs (NDs), allowing food quality monitoring via the detection of food spoilage indicators, including the biogenic amines cadaverine (CV) and putrescine (PT). The olfactory receptors TAAR13c and TAAR13d, which have specific affinities for CV and PT, were produced and successfully reconstituted in ND structures. TAAR13 NDs BE-nose-based side-gated field-effect transistor (SG-FET) system was constructed by utilizing a graphene micropattern (GM) into which two types of olfactory NDs (TAAR13c ND and TAAR13d ND) were introduced, and this system showed ultrahigh sensitivity for a limit of detection (LOD) of 1 fM for CV and PT. Moreover, the binding affinities between the TAAR13 NDs and the indicators were confirmed by a tryptophan fluorescence quenching assay and biosimulations, in which the specific binding site was confirmed. Gas-phase indicators were detected by the TAAR13 NDs BE-nose platform, and the LODs for CV and PT were confirmed to be 26.48 and 7.29 ppb, respectively. In addition, TAAR13 NDs BE-nose was fabricated with commercial gas sensors as a portable platform for the measurement of NH3 and H2S, multiplexed monitoring was achieved with similar performance, and the change ratio of the indicators was observed in a real sample. The integration of commercial gas sensors on a BE-nose enhanced the accuracy and reliability for the quality monitoring of real food samples. These results indicate that the portable TAAR13 NDs BE-nose can be used to monitor CV and PT over a wide range of concentrations, therefore, the electronic nose platform can be utilized for monitoring the freshness/spoilage step in various foods.
Collapse
|
3
|
Zhao J, Sugihara K. Analysis of PDA Dose Curves for the Extraction of Antimicrobial Peptide Properties. J Phys Chem B 2021; 125:12206-12213. [PMID: 34706534 DOI: 10.1021/acs.jpcb.1c07533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A mechanochromic polymer, polydiacetylene, changes color upon ligand binding, being a popular material in biosensing. However, whether it can also detect ligand functions in addition to binding is left understudied. In this work, we report that the polydiacetylene can be used to determine the net charges and the mode of actions (carpet model, toroidal pore model, etc.) of antimicrobial peptides and detergents via EC50 and Hill coefficients from the colorimetric response-dose curves. This opens a potential for high-throughput peptide screening by functions, which is difficult with the conventional methods.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - Kaori Sugihara
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
4
|
Hall AV, Musa OM, Hood DK, Apperley DC, Yufit DS, Steed JW. Alkali Metal Salts of 10,12-Pentacosadiynoic Acid and Their Dosimetry Applications. CRYSTAL GROWTH & DESIGN 2021. [PMID: 34054354 DOI: 10.1021/acs.cgd.1c00300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wide-dose-range 2D radiochromic films for radiotherapy, such as GAFchromic EBT, are based on the lithium salt of 10,12-pentacosadiynoic acid (Li-PCDA) as the photosensitive component. We show that there are two solid forms of Li-PCDA-a monohydrated form A and an anhydrous form B. The form used in commercial GAFchromic films is form A due to its short needle-shaped crystals, which provide favorable coating properties. Form B provides an enhanced photoresponse compared to that of form A, but adopts a long needle crystal morphology, which is difficult to process. The two forms were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, CP-MAS 13C solid-state NMR spectroscopy, and thermogravimetric analysis. In sum, these data suggest a chelating bridging bidentate coordination mode for the lithium ions. The sodium salt of PCDA (Na-PCDA) is also reported, which is an ionic cocrystal with a formula of Na+PCDA-·3PCDA. The PCDA and PCDA- ligands display monodentate and bridging bidentate coordination to the sodium ion in contrast to the coordination sphere of the Li-PCDA forms. In contrast to its lithium analogues, Na-PCDA is photostable.
Collapse
Affiliation(s)
- Amy V Hall
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| | - Osama M Musa
- Ashland LLC, 1005 Route 202/206, Bridgewater, New Jersey 08807, United States
| | - David K Hood
- Ashland LLC, 1005 Route 202/206, Bridgewater, New Jersey 08807, United States
| | - David C Apperley
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| | - Dmitry S Yufit
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| | - Jonathan W Steed
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, U.K
| |
Collapse
|
5
|
Huang Q, Wu W, Ai K, Liu J. Highly Sensitive Polydiacetylene Ensembles for Biosensing and Bioimaging. Front Chem 2020; 8:565782. [PMID: 33282824 PMCID: PMC7691385 DOI: 10.3389/fchem.2020.565782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Polydiacetylenes are prepared from amphiphilic diacetylenes first through self-assembly and then polymerization. Different from common supramolecular assemblies, polydiacetylenes have stable structure and very special optical properties such as absorption, fluorescence, and Raman. The hydrophilic head of PDAs is easy to be chemically modified with functional groups for detection and imaging applications. PDAs will undergo a specific color change from blue to red, fluorescence enhancement and Raman spectrum changes in the presence of receptor ligands. These properties allow PDA-based sensors to have high sensitivity and specificity during analysis. Therefore, the PDAs have been widely used for detection of viruses, bacteria, proteins, antibiotics, hormones, sialic acid, metal ions and as probes for bioimaging in recent years. In this review, the preparation, polymerization, and detection mechanisms of PDAs are discussed, and some representative research advances in the field of bio-detection and bioimaging are highlighted.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Khazi MI, Balachandra C, Shin G, Jang GH, Govindaraju T, Kim JM. Co-solvent polarity tuned thermochromic nanotubes of cyclic dipeptide-polydiacetylene supramolecular system. RSC Adv 2020; 10:35389-35396. [PMID: 35515666 PMCID: PMC9056892 DOI: 10.1039/d0ra05656a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
The cooperative non-covalent interactions arising from structurally integrated multiple molecules have emerged as a powerful tool for the creation of functional supramolecular structures. Herein, we constructed cyclic dipeptide (CDP)–polydiacetylene (PDA) conjugate (CDP–DA) by introducing cyclo(l-Phe-l-Lys) to the linear 10,12-pentacosadiynoic acid. Owing to extensive hydrogen bonding characteristics, together with structural chirality of cyclo(l-Phe-l-Lys) and strong π–π stacking diacetylenic template, CDP–DA generated supramolecular nanotubes. The structural visualization using scanning and transmission electron microscopy revealed chloroform/methanol co-solvent polarity tuned morphological transformation of intrinsic lamellar assemblies into nanotubes comprising single-wall and multi-wall structure. The mechanistic understanding by X-ray diffraction patterns confirms bilayer organization in lamellar structure, which forms nanotubes via a gradual lamellar curling-to-scrolling process. The supramolecular CDP–DA nanotubes are transformed into the rigid covalently cross-linked blue-phase polydiacetylene (CDP–PDA) by UV irradiation. Very interestingly, the blue-phase nanotubes display reversible thermochromic changing temperature up to 150 °C with excellent repeatability over a dozen thermal cycles. This work provides an efficient strategy for precise morphological control and aiding the perspective for development in nanostructures for functional devices. Co-solvent controlled fabrication of thermo-responsive chromogenic nanotubes of a cyclic dipeptide–polydiacetylene supramolecular system.![]()
Collapse
Affiliation(s)
| | - Chenikkayala Balachandra
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Geon Shin
- Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| | - Gang-Hee Jang
- Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Jong-Man Kim
- Institute of Nano Science and Technology, Hanyang University Seoul 04763 Korea .,Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| |
Collapse
|
7
|
Lee NJ, Maeng S, Kim HU, Roh YH, Hwang C, Kim J, Hwang KT, Bong KW. Affinity-Enhanced CTC-Capturing Hydrogel Microparticles Fabricated by Degassed Mold Lithography. J Clin Med 2020; 9:E301. [PMID: 31973077 PMCID: PMC7073783 DOI: 10.3390/jcm9020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Technologies for the detection and isolation of circulating tumor cells (CTCs) are essential in liquid biopsy, a minimally invasive technique for early diagnosis and medical intervention in cancer patients. A promising method for CTC capture, using an affinity-based approach, is the use of functionalized hydrogel microparticles (MP), which have the advantages of water-like reactivity, biologically compatible materials, and synergy with various analysis platforms. In this paper, we demonstrate the feasibility of CTC capture by hydrogel particles synthesized using a novel method called degassed mold lithography (DML). This technique increases the porosity and functionality of the MPs for effective conjugation with antibodies. Qualitative fluorescence analysis demonstrates that DML produces superior uniformity, integrity, and functionality of the MPs, as compared to conventional stop flow lithography (SFL). Analysis of the fluorescence intensity from porosity-controlled MPs by each reaction step of antibody conjugation elucidates that more antibodies are loaded when the particles are more porous. The feasibility of selective cell capture is demonstrated using breast cancer cell lines. In conclusion, using DML for the synthesis of porous MPs offers a powerful method for improving the cell affinity of the antibody-conjugated MPs.
Collapse
Affiliation(s)
- Nak Jun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (N.J.L.); (H.U.K.); (Y.H.R.); (C.H.)
| | - Sejung Maeng
- Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Korea; (S.M.); (J.K.)
| | - Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (N.J.L.); (H.U.K.); (Y.H.R.); (C.H.)
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (N.J.L.); (H.U.K.); (Y.H.R.); (C.H.)
| | - Changhyun Hwang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (N.J.L.); (H.U.K.); (Y.H.R.); (C.H.)
| | - Jongjin Kim
- Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Korea; (S.M.); (J.K.)
| | - Ki-Tae Hwang
- Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Korea; (S.M.); (J.K.)
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (N.J.L.); (H.U.K.); (Y.H.R.); (C.H.)
| |
Collapse
|
8
|
Shin G, Khazi MI, Kim JM. Protonation-Induced Self-Assembly of Flexible Macrocyclic Diacetylene for Constructing Stimuli-Responsive Polydiacetylene. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|