1
|
Xu Q, Ling L. Interface Visualization of Bio-material Interaction Via Cryo-AEM Using the Biosynthesis of Iron-Based Nanoparticles as a Model. Anal Chem 2024; 96:9756-9760. [PMID: 38781095 DOI: 10.1021/acs.analchem.3c05877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Although interaction between organisms and nonorganisms is vital in environmental processes, it is difficult to characterize at nanoscale resolution. Biosynthesis incorporates intracellular and extracellular processes involving crucial interfacial functions and electron and substance transfer processes, especially on the inorganic-organic interface. This work chooses the biosynthesis of iron-based nanoparticles (nFe) as a model for biomaterial interaction and employs Cryo-AEM (i.e., S/TEM, EELS, and EDS analysis based on sample preparation with cryo-transfer holder system), combined with CV, Raman, XPS, and FTIR to reveal the inorganic-organic interface process. The inorganic-organic interactions in the biosynthesis of iron-based nanoparticles by Shewanella oneidensis MR-1 (M-nFe) were characterized by changes in electron cloud density, and the corresponding chemical shifts of Fe and C EELS edges confirm that M-nFe acquires electrons from MR-1 on the interface. Capturing intact filamentous-like, slightly curved, and bundled structure provides solid evidence of a "circuit channel" for electron transfer between organic and inorganic interface. CV results also confirm that adding M-nFe can enhance electron transfer from MR-1 to ferric ions. A mechanism for the synthesis of M-nFe with MR-1 based on intracellular and extracellular conditions under facultative anaerobic was visualized, providing a protocol for investigating the organic-inorganic interface.
Collapse
Affiliation(s)
- Qianyu Xu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lan Ling
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Shi R, Dong Z, Ma C, Wu R, Lv R, Liu S, Ren Y, Liu Z, van der Mei HC, Busscher HJ, Liu J. High-Yield, Magnetic Harvesting of Extracellular Outer-Membrane Vesicles from Escherichia coli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204350. [PMID: 36269872 DOI: 10.1002/smll.202204350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Extracellular outer-membrane vesicles (OMVs) are attractive for use as drug nanocarriers, because of their high biocompatibility and ability to enter cells. However, widespread use is hampered by low yields. Here, a high-yield method for magnetic harvesting of OMVs from Escherichia coli is described. To this end, E. coli are grown in the presence of magnetic iron-oxide nanoparticles (MNPs). Uptake of MNPs by E. coli is low and does not increase secretion of OMVs. Uptake of MNPs can be enhanced through PEGylation of MNPs. E. coli growth in the presence of PEGylated MNPs increases bacterial MNP-uptake and OMV-secretion, accompanied by upregulation of genes involved in OMV-secretion. OMVs containing MNPs can be magnetically harvested at 60-fold higher yields than achieved by ultracentrifugation. Functionally, magnetically-harvested OMVs and OMVs harvested by ultracentrifugation are both taken-up in similar numbers by bacteria. Uniquely, in an applied magnetic field, magnetically-harvested OMVs with MNPs accumulate over the entire depth of an infectious biofilm. OMVs harvested by ultracentrifugation without MNPs only accumulate near the biofilm surface. In conclusion, PEGylation of MNPs is essential for their uptake in E. coli and yields magnetic OMVs allowing high-yield magnetic-harvesting. Moreover, magnetic OMVs can be magnetically targeted to a cargo delivery site in the human body.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Ziliang Dong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Chongqing Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Renfei Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Rui Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Sidi Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
3
|
The Magnetosome Protein, Mms6 from Magnetospirillum magneticum Strain AMB-1, Is a Lipid-Activated Ferric Reductase. Int J Mol Sci 2022; 23:ijms231810305. [PMID: 36142217 PMCID: PMC9499114 DOI: 10.3390/ijms231810305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022] Open
Abstract
Magnetosomes of magnetotactic bacteria consist of magnetic nanocrystals with defined morphologies enclosed in vesicles originated from cytoplasmic membrane invaginations. Although many proteins are involved in creating magnetosomes, a single magnetosome protein, Mms6 from Magnetospirillum magneticum strain AMB-1, can direct the crystallization of magnetite nanoparticles in vitro. The in vivo role of Mms6 in magnetosome formation is debated, and the observation that Mms6 binds Fe3+ more tightly than Fe2+ raises the question of how, in a magnetosome environment dominated by Fe3+, Mms6 promotes the crystallization of magnetite, which contains both Fe3+ and Fe2+. Here we show that Mms6 is a ferric reductase that reduces Fe3+ to Fe2+ using NADH and FAD as electron donor and cofactor, respectively. Reductase activity is elevated when Mms6 is integrated into either liposomes or bicelles. Analysis of Mms6 mutants suggests that the C-terminal domain binds iron and the N-terminal domain contains the catalytic site. Although Mms6 forms multimers that involve C-terminal and N-terminal domain interactions, a fusion protein with ubiquitin remains a monomer and displays reductase activity, which suggests that the catalytic site is fully in the monomer. However, the quaternary structure of Mms6 appears to alter the iron binding characteristics of the C-terminal domain. These results are consistent with a hypothesis that Mms6, a membrane protein, promotes the formation of magnetite in vivo by a mechanism that involves reducing iron.
Collapse
|
4
|
Seetasang S, Xu Y. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. J Mater Chem B 2022; 10:2323-2337. [DOI: 10.1039/d1tb02675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired materials have attracted attention in a wide range of fields. Among these materials, a polymer family containing 2-methacryloyloxyethyl phosphorylcholine (MPC), which has a zwitterionic phosphorylcholine headgroup inspired by the...
Collapse
|
5
|
Kralj S, Marchesan S. Bioinspired Magnetic Nanochains for Medicine. Pharmaceutics 2021; 13:1262. [PMID: 34452223 PMCID: PMC8398308 DOI: 10.3390/pharmaceutics13081262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used for medicine, both in therapy and diagnosis. Their guided assembly into anisotropic structures, such as nanochains, has recently opened new research avenues; for instance, targeted drug delivery. Interestingly, magnetic nanochains do occur in nature, and they are thought to be involved in the navigation and geographic orientation of a variety of animals and bacteria, although many open questions on their formation and functioning remain. In this review, we will analyze what is known about the natural formation of magnetic nanochains, as well as the synthetic protocols to produce them in the laboratory, to conclude with an overview of medical applications and an outlook on future opportunities in this exciting research field.
Collapse
Affiliation(s)
- Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
6
|
Abstract
Magnetotactic bacteria (MTB) belong to several phyla. This class of microorganisms exhibits the ability of magneto-aerotaxis. MTB synthesize biominerals in organelle-like structures called magnetosomes, which contain single-domain crystals of magnetite (Fe3O4) or greigite (Fe3S4) characterized by a high degree of structural and compositional perfection. Magnetosomes from dead MTB could be preserved in sediments (called fossil magnetosomes or magnetofossils). Under certain conditions, magnetofossils are capable of retaining their remanence for millions of years. This accounts for the growing interest in MTB and magnetofossils in paleo- and rock magnetism and in a wider field of biogeoscience. At the same time, high biocompatibility of magnetosomes makes possible their potential use in biomedical applications, including magnetic resonance imaging, hyperthermia, magnetically guided drug delivery, and immunomagnetic analysis. In this review, we attempt to summarize the current state of the art in the field of MTB research and applications.
Collapse
|
7
|
Taher Z, Legge C, Winder N, Lysyganicz P, Rawlings A, Bryant H, Muthana M, Staniland S. Magnetosomes and Magnetosome Mimics: Preparation, Cancer Cell Uptake and Functionalization for Future Cancer Therapies. Pharmaceutics 2021; 13:367. [PMID: 33802121 PMCID: PMC7998144 DOI: 10.3390/pharmaceutics13030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Magnetic magnetite nanoparticles (MNP) are heralded as model vehicles for nanomedicine, particularly cancer therapeutics. However, there are many methods of synthesizing different sized and coated MNP, which may affect their performance as nanomedicines. Magnetosomes are naturally occurring, lipid-coated MNP that exhibit exceptional hyperthermic heating, but their properties, cancer cell uptake and toxicity have yet to be compared to other MNP. Magnetosomes can be mimicked by coating MNP in either amphiphilic oleic acid or silica. In this study, magnetosomes are directly compared to control MNP, biomimetic oleic acid and silica coated MNP of varying sizes. MNP are characterized and compared with respect to size, magnetism, and surface properties. Small (8 ± 1.6 nm) and larger (32 ± 9.9 nm) MNP are produced by two different methods and coated with either silica or oleic acid, increasing the size and the size dispersity of the MNP. The coated larger MNP are comparable in size (49 ± 12.5 nm and 61 ± 18.2 nm) to magnetosomes (46 ± 11.8 nm) making good magnetosome mimics. All MNP are assessed and compared for cancer cell uptake in MDA-MB-231 cells and importantly, all are readily taken up with minimal toxic effect. Silica coated MNP show the most uptake with greater than 60% cell uptake at the highest concentration, and magnetosomes showing the least with less than 40% at the highest concentration, while size does not have a significant effect on uptake. Finally, surface functionalization is demonstrated for magnetosomes and silica coated MNP using biotinylation and EDC-NHS, respectively, to conjugate fluorescent probes. The modified particles are visualized in MDA-MB-231 cells and demonstrate how both naturally biosynthesized magnetosomes and biomimetic silica coated MNP can be functionalized and readily up taken by cancer cells for realization as nanomedical vehicles.
Collapse
Affiliation(s)
- Zainab Taher
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| | - Christopher Legge
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Natalie Winder
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Pawel Lysyganicz
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Andrea Rawlings
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| | - Helen Bryant
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (H.B.); (M.M.)
| | - Sarah Staniland
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (Z.T.); (C.L.); (N.W.); (P.L.); (A.R.)
| |
Collapse
|
8
|
Biomimetic Magnetoliposomes as Oxaliplatin Nanocarriers: In Vitro Study for Potential Application in Colon Cancer. Pharmaceutics 2020; 12:pharmaceutics12060589. [PMID: 32599905 PMCID: PMC7356838 DOI: 10.3390/pharmaceutics12060589] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Current chemotherapy for colorectal cancer (CRC) includes the use of oxaliplatin (Oxa), a first-line cytotoxic drug which, in combination with irinotecan/5-fluorouracil or biologic agents, increases the survival rate of patients. However, the administration of this drug induces side effects that limit its application in patients, making it necessary to develop new tools for targeted chemotherapy. MamC-mediated biomimetic magnetic nanoparticles coupled with Oxa (Oxa-BMNPs) have been previously demonstrated to efficiently reduce the IC50 compared to that of soluble Oxa. However, their strong interaction with the macrophages revealed toxicity and possibility of aggregation. In this scenario, a further improvement of this nanoassembly was necessary. In the present study, Oxa-BMNPs nanoassemblies were enveloped in phosphatidylcholine unilamellar liposomes (both pegylated and non-pegylated). Our results demonstrate that the addition of both a lipid cover and further pegylation improves the biocompatibility and cellular uptake of the Oxa-BMNPs nanoassemblies without significantly reducing their cytotoxic activity in colon cancer cells. In particular, with the pegylated magnetoliposome nanoformulation (a) hemolysis was reduced from 5% to 2%, being now hematocompatibles, (b) red blood cell agglutination was reduced, (c) toxicity in white blood cells was eliminated. This study represents a truly stepforward in this area as describes the production of one of the very few existing nanoformulations that could be used for a local chemotherapy to treat CRC.
Collapse
|
9
|
Alphandéry E. Bio-synthesized iron oxide nanoparticles for cancer treatment. Int J Pharm 2020; 586:119472. [PMID: 32590095 DOI: 10.1016/j.ijpharm.2020.119472] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022]
Abstract
Various living organisms, such as bacteria, plants, and animals can synthesize iron oxide nanoparticles (IONP). The mechanism of nanoparticle (NP) formation is usually described as relying on the reduction of ferric/ferrous iron ions into crystallized nanoparticulate iron that is surrounded by an organic stabilizing layer. The properties of these NP are characterized by a composition made of different types of iron oxide whose most stable and purest one appears to be maghemite, by a size predominantly comprised between 5 and 380 nm, by a crystalline core, by a surface charge which depends on the nature of the material coating the iron oxide, and by certain other properties such as a sterility, stability, production in mass, absence of aggregation, that have apparently only been studied in details for IONP synthesized by magnetotactic bacteria, called magnetosomes. In the majority of studies, bio-synthesized IONP are described as being biocompatible and as not inducing cytotoxicity towards healthy cells. Anti-tumor activity of bio-synthesized IONP has mainly been demonstrated in vitro, where this type of NP displayed cytotoxicity towards certain tumor cells, e.g. through the anti-tumor activity of IONP coating or through IONP anti-oxidizing property. Concerning in vivo anti-tumor activity, it was essentially highlighted for magnetosomes administered in different types of glioblastoma tumors (U87-Luc and GL-261), which were exposed to a series of alternating magnetic field applications, resulting in mild hyperthermia treatments at typical temperatures of 41-45 °C, leading to the full disappearance of these tumors without any observable side effects.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Paris Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS, 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de, Cosmochimie, IMPMC, 75005 Paris, France; Nanobacterie SARL, 36 boulevard Flandrin, 75116 Paris, France; Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
10
|
Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020; 12:E1397. [PMID: 32580366 PMCID: PMC7362228 DOI: 10.3390/polym12061397] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Particle Physics Department Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|