1
|
Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D, Pani R, De Vincentis G, De Sio L. 18F-fluorodeoxyglucose ( 18F-FDG) Functionalized Gold Nanoparticles (GNPs) for Plasmonic Photothermal Ablation of Cancer: A Review. Pharmaceutics 2023; 15:319. [PMID: 36839641 PMCID: PMC9967497 DOI: 10.3390/pharmaceutics15020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The meeting and merging between innovative nanotechnological systems, such as nanoparticles, and the persistent need to outperform diagnostic-therapeutic approaches to fighting cancer are revolutionizing the medical research scenario, leading us into the world of nanomedicine. Photothermal therapy (PTT) is a non-invasive thermo-ablative treatment in which cellular hyperthermia is generated through the interaction of near-infrared light with light-to-heat converter entities, such as gold nanoparticles (GNPs). GNPs have great potential to improve recovery time, cure complexity, and time spent on the treatment of specific types of cancer. The development of gold nanostructures for photothermal efficacy and target selectivity ensures effective and deep tissue-penetrating PTT with fewer worries about adverse effects from nonspecific distributions. Regardless of the thriving research recorded in the last decade regarding the multiple biomedical applications of nanoparticles and, in particular, their conjugation with drugs, few works have been completed regarding the possibility of combining GNPs with the cancer-targeted pharmaceutical fluorodeoxyglucose (FDG). This review aims to provide an actual scenario on the application of functionalized GNP-mediated PTT for cancer ablation purposes, regarding the opportunity given by the 18F-fluorodeoxyglucose (18F-FDG) functionalization.
Collapse
Affiliation(s)
- Mariano Pontico
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Francesca Petronella
- Institute of Crystallography CNR-IC, National Research Council of Italy, Monterotondo, 00015 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Dario Di Luzio
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Roberto Pani
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
2
|
Chen Z, Zeng Y, Chen N, Zhang M, Wang Y, Pan Z, Yuan J, Ye Z, Li X, Bian W, Li H, Zhang K, He Y, Liu X. A Facile and Universal Method for Preparing Polyethylene Glycol-Metal Hybrid Nanoparticles and Their Application in Tumor Theranostics. Adv Healthc Mater 2022; 11:e2200044. [PMID: 35192244 DOI: 10.1002/adhm.202200044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Indexed: 12/19/2022]
Abstract
Metal ions are of widespread interest owing to their brilliant biomedical functions. However, a simple and universal nanoplatform designed for assembling a range of functional metal ions has not been explored. In this study, a concept of polyethylene glycol (PEG)-mediated transport of metal ions is proposed. 31 types of PEG-metal hybrid nanoparticles (P-MNPs) are successfully synthesized through anionic ring-opening polymerization (ROP), "thiol-ene" click reaction, and subsequent incorporation with multiple metal ions. Compared with other methods, the facile method proposed in this study can provide a feasible approach to design MNPs (mostly <200 nm) containing different metal ions and thus to explore their potential for cancer theranostics. As a proof-of-concept demonstration, four types P-MNPs, i.e., PEG-metal hybrid copper nanoparticles (PEG-Cu NPs), ruthenium nanoparticles (PEG-Ru NPs), and manganese nanoparticles (PEG-Mn NPs) or gadolinium nanoparticles (PEG-Gd NPs), are proven to be tailored for chemodynamic therapy, photothermal therapy, and magnetic resonance imaging of tumors, respectively. Overall, this study provides several metal ions-based nanomaterials with versatile functions for broad applications in cancer theranostics. Furthermore, it offers a promising tool that can be utilized for processing other metal-based nanoparticles and exploring their potential in the biomedical field.
Collapse
Affiliation(s)
- Zefeng Chen
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Yaoxun Zeng
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Niping Chen
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Mingxia Zhang
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Yakun Wang
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Zhenxing Pan
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Jiongpeng Yuan
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Zhaoyi Ye
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Xiaojing Li
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Wangqing Bian
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Haihong Li
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Kun Zhang
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Yan He
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Xujie Liu
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| |
Collapse
|
3
|
Nakhla S, Rahawy A, Salam MAE, Shalaby T, Zaghloul M, El-Abd E. Radiosensitizing and Phototherapeutic Effects of AuNPs are Mediated by Differential Noxa and Bim Gene Expression in MCF-7 Breast Cancer Cell Line. IEEE Trans Nanobioscience 2020; 20:20-27. [PMID: 33017288 DOI: 10.1109/tnb.2020.3028562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To compare the apoptotic efficiency of AuNPs, ionizing and non-ionizing radiotherapy, phototherapy, and AuNPs-ionizing-radiotherapy), MCF-7 cells were used as a model for luminal B subtypes of breast carcinoma. A mixture of AuNPs [66% of Au-nanospheres (AuNSs) and 34% of Au-nanorods (AuNRs)] was synthesized and characterized by optical spectroscopy, zeta potential, and transmission electron microscopy (TEM). MCF-7 were divided into six groups (triplicates); after each treatment, cell viability was tested by MTT assay and relative gene expression levels of Bim and Noxa proapoptotic markers were assayed by qRT-PCR. A dose-dependent significant reduction in cell viability of MCF-7 was detected by all examined treatment protocols. Lower viability detected at extended exposure (48 hours) to AuNPs ( [Formula: see text]/ml) was mediated by the upregulation of Noxa gene expression. AuNS and AuNR in vitro PTTs were mediated by differential expression of Bim and Noxa while AuNPs mixture had a combined effect on both Bim and Noxa. Cellular recovery was observed two days-post x-rays irradiation at does < 3 Gy. AuNPs showed dose enhancement factor (DEF) > 12 indicating a high radiosensitizing effect that was partially mediated by Noxa. In conclusion, AuNPs combined therapies exert better anti-proliferative effects via differential regulation of Noxa and Bim gene expressions.
Collapse
|
4
|
Gong Z, Liu X, Wu J, Li X, Tang Z, Deng Y, Sun X, Chen K, Gao Z, Bai J. pH-triggered morphological change in a self-assembling amphiphilic peptide used as an antitumor drug carrier. NANOTECHNOLOGY 2020; 31:165601. [PMID: 31891937 DOI: 10.1088/1361-6528/ab667c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The geometry of nanoparticles plays an important role in the process of drug encapsulation and release. In this study, an acid-responsive amphiphilic polypeptide consisting of lysine and leucine was prepared. In neutral media, the amphiphilic peptide L6K4 self-assembled to form spherical nanoparticles and encapsulated fat-soluble antitumor drugs. The intratumoral accumulation of the drug-loaded nanoparticles was improved in HeLa cells compared with normal cells. Compared to a neutral environment, increasingly acidic solutions changed the secondary structure of the peptide. In addition, the drug-loaded nanoparticles expanded and decomposed, rapidly releasing the poorly soluble antitumor drug doxorubicin (DOX). In addition, the amphiphilic peptide L6K4 had antitumor properties, and the antitumor performance of the combination of L6K4 and DOX was better than that of free DOX. Our results indicate that the use of acid responsiveness to induce geometric changes in drug-loaded peptide nanoparticles could be a promising strategy for antitumor drug delivery.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, 261042, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fernandes N, Rodrigues CF, Moreira AF, Correia IJ. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater Sci 2020; 8:2990-3020. [DOI: 10.1039/d0bm00222d] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Cancer photothermal therapy (PTT) has captured the attention of researchers worldwide due to its localized and trigger-activated therapeutic effect.
Collapse
Affiliation(s)
- Natanael Fernandes
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Carolina F. Rodrigues
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - André F. Moreira
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Ilídio J. Correia
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
- CIEPQF—Departamento de Engenharia Química
| |
Collapse
|