1
|
Deng Y, Liu J, Zhou Z, Li L, Shi Y, Tang R, Li W, Huang Y. Recent Advances in Piezoelectric Coupled with Photocatalytic Reaction System: Synergistic Mechanism, Enhancement Factors, and Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50071-50095. [PMID: 39258709 DOI: 10.1021/acsami.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The field of photocatalysis has demonstrated numerous advantages in the domains of environmental protection, energy, and materials science. However, conventional modification methods fail to simultaneously enhance carrier separation efficiency, redox capacity, and visible light absorption solely through light activation due to the intrinsic band structure limitations of photocatalysts. In addition to modification methods, the introduction of an external field, such as a piezoelectric field, can effectively address deficiencies in each step of the photocatalytic process and enhance the overall performance. The assistance of a piezoelectric field overcomes the limitations inherent in traditional photocatalytic systems. Hence, this review provides a comprehensive overview of recent advancements in piezoelectric-assisted photocatalysis and thoroughly investigates the interaction between the alternating piezoelectric field and photocatalytic processes. Various ideas for synergistic enhancement of the piezoelectric and photocatalytic properties are also explored. This multifield catalytic system shows remarkable performance in stability, pollutant degradation, and energy conversion, distinguishing it from single catalytic systems. Finally, an in-depth analysis is conducted to address the challenges and prospects associated with piezoelectric photocatalysis technology.
Collapse
Affiliation(s)
- Yaocheng Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jiawei Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhanpeng Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Ling Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Yu Shi
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rongdi Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenbo Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Ying Huang
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Mishra HK, Ankush, Barman N, Mondal B, Jha M, Thapa R, Mandal D. Beyond Conventional Catalysts: Monoelemental Tellurium as a Game Changer for Piezo-Driven Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402421. [PMID: 39007248 DOI: 10.1002/smll.202402421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Indexed: 07/16/2024]
Abstract
The increasing demand for clean hydrogen production over fossil fuels necessitates the development of sustainable piezoelectrochemical methods that can overcome the limitations of conventional electrocatalytic and photocatalytic approaches. In this regard, existing piezocatalysts face challenges related to their low piezoelectricity or active site coverage for hydrogen evolution reaction (HER). Driven by global environmental concerns, there is a compelling push to engineer practical materials for highly efficient HER. Herein, monoelemental 2D tellurium (Te) is presented as a class of layered chalcogenide with a non-centrosymmetric crystal structure (P3121 space group). The refined Te nanosheets demonstrate an unprecedented highly efficient H2 production rate ≈9000 µmol g-1 h-1 under ultrasonic mechanical vibration due to built-in piezo-potential in the system. The remarkable piezocatalytic performance of Te nanosheets arises from a synergistic interplay between their semi-metallic nature, favorable free energy landscape, enhanced electrical conductivity and outstanding piezoelectricity. As a proof of concept, the theoretical approach based on Density Functional Theory (DFT) validates the findings due to the gradual exposure of active sites on the Te nanosheets leading to a self-optimized catalytic performance for hydrogen generation. Therefore, mechanically driven Te emerges as a promising piezocatalyst with the potential to revolutionize highly efficient and sustainable technology for futuristic applications.
Collapse
Affiliation(s)
- Hari Krishna Mishra
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, India
| | - Ankush
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, India
| | - Narad Barman
- Department of Physics, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Bidya Mondal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, India
| | - Menaka Jha
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, India
| | - Ranjit Thapa
- Department of Physics, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
- Centre for Computational and Integrative Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, India
| |
Collapse
|
3
|
Takhar D, Birajdar B, Ghosh RK. Dual functionality of the BiN monolayer: unraveling its photocatalytic and piezocatalytic water splitting properties. Phys Chem Chem Phys 2024; 26:16261-16272. [PMID: 38804603 DOI: 10.1039/d4cp01047g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
To achieve scalable and economically viable green hydrogen (H2) production, the photocatalytic and piezocatalytic processes are promising methods. The key to successful overall water splitting (OWS) for H2 production in these processes is using suitable semiconductor catalysts with appropriate band edge potentials, efficient optical absorption, higher mechanical flexibility, and piezoelectric coefficients. Thus, we explore the bismuth nitride (BiN) monolayer using density functional theory simulations, revealing intriguing catalytic properties. The BiN monolayer is a semiconductor with an indirect electronic bandgap (Eg) of 2.08 eV and displays excellent visible light absorption (approximately 105 cm-1). Detailed analyses show that the band edges satisfy the redox potential for photocatalytic OWS via biaxial strain engineering and pH variation. Notably, the solar to hydrogen conversion efficiency (ηSTH) for the BiN monolayer can reach 17.18%, which exceeds the 10% efficiency limit of photocatalysts for economical green H2 production. The obtained in-plane piezoelectric coefficient of e11 = 16.18 Å C m-1 is superior to widely studied 2D materials. Moreover, the generated piezopotential under oscillatory strain stands at 28.34 V, which can initiate the water redox reaction via the piezocatalytic mechanism. This originates from the mechanical flexibility coupled with higher piezoelectric coefficients. The result highlights the BiN monolayer's potential application in photocatalytic, piezocatalytic, and photo-piezo-catalytic OWS.
Collapse
Affiliation(s)
- Devender Takhar
- Special Centre for Nanoscience, Jawaharlal Nehru University, Delhi 110067, India
| | - Balaji Birajdar
- Special Centre for Nanoscience, Jawaharlal Nehru University, Delhi 110067, India
| | - Ram Krishna Ghosh
- Department of Electronics and Communication Engineering, Indraprastha Institute of Information Technology, Delhi 110020, India.
| |
Collapse
|
4
|
Su P, Zhang D, Yao X, Liang T, Yang N, Zhang D, Pu X, Liu J, Cai P, Li Z. Enhanced piezo-photocatalytic performance in ZnIn 2S 4/BiFeO 3 heterojunction stimulated by solar and mechanical energy for efficient hydrogen evolution. J Colloid Interface Sci 2024; 662:276-288. [PMID: 38354555 DOI: 10.1016/j.jcis.2024.02.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
An emerging approach that employs both light and vibration energy on binary photo-/piezoelectric semiconductor materials for efficient hydrogen (H2) evolution has garnered considerable attention. ZnIn2S4 (ZIS) is recognized as a promising visible-light-activated photocatalyst. However, its effectiveness is constraint by the slow separation dynamics of photoexcited carriers. Density functional theory (DFT) predictions have shown that the integration of piezoelectric BiFeO3 (BFO) is conducive to the reduction of the H2 adsorption free energy (ΔGH*) for the photocatalytic H2 evolution reaction, thereby enhancing the reaction kinetics. Informed by theoretical predictions, piezoelectric BFO polyhedron particles were successfully synthesized and incorporated with ZIS nanoflowers to create a ZIS/BFO heterojunction using an ultrasonic-assisted calcination method. When subjected to simultaneous ultrasonic treatment and visible-light irradiation, the optimal ZIS/BFO piezoelectric enhanced (piezo-enhanced) heterojunction exhibited a piezoelectric photocatalytic (piezo-photocatalytic) H2 evolution rate approximately 6.6 times higher than that of pristine ZIS and about 3.0 times greater than the rate achieved under light-only conditions. Moreover, based on theoretical predictions and experimental results, a plausible mechanism and charge transfer route for the enhancement of piezo-photocatalytic performance were studied by the subsequent piezoelectric force microscopy (PFM) measurements and DFT calculations. The findings of this study strongly confirm that both the internal electric field of the step-scheme (S-Scheme) heterojunction and the alternating piezoelectric field generated by the vibration of BFO can enhance the transportation and separation of electron-hole pairs. This study presents a concept for the multipath utilization of light and vibrational energy to harness renewable energy from the environment.
Collapse
Affiliation(s)
- Ping Su
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Dong Zhang
- School of Physics Science and Information Technology, Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Xintong Yao
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Tengteng Liang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Nan Yang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Dafeng Zhang
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Xipeng Pu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, Shandong 252000, PR China.
| | - Junchang Liu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Peiqing Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Zhengping Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| |
Collapse
|
5
|
Liu L, Kang X, Gao S, Duan X. Two-dimensional ternary pentagonal BCX (X = P, As, and Sb): promising photocatalyst semiconductors for water splitting with strong piezoelectricity. Phys Chem Chem Phys 2023; 26:336-341. [PMID: 38063045 DOI: 10.1039/d3cp04866g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Seeking high-performance energy conversion materials is one of the most important issues in designing 2D materials. In the framework of density functional theory, we propose a series of ternary monolayers, penta-BCX (X = P, As, and Sb), and systematically investigate their structural stability, mechanical, piezoelectric, and photocatalytic properties. All three materials are semiconductors with a bandgap ranging from 2.56 eV to 3.24 eV, so they could be promising catalysts for the photolysis of water. Penta-BCX exhibits significant piezoelectric properties attributed to their non-centrosymmetric structure and low in-plane Young's modulus, which are expected to efficiently drive photocatalytic water decomposition. Moreover, the bandgap, band edge position, and light absorption of penta-BCX can be modulated by tensile or compressive strain to enhance their photocatalytic performance in the visible light and ultraviolet regions.
Collapse
Affiliation(s)
- Luqi Liu
- School of Physical Science and Technology, Ningbo University, Ningbo, P. R. China.
| | - Xuxin Kang
- School of Physical Science and Technology, Ningbo University, Ningbo, P. R. China.
| | - Shan Gao
- School of Physical Science and Technology, Ningbo University, Ningbo, P. R. China.
- Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, P. R. China
| | - Xiangmei Duan
- School of Physical Science and Technology, Ningbo University, Ningbo, P. R. China.
- Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, P. R. China
| |
Collapse
|
6
|
Li C, Wang X, Wu J, Gao J, Zhao R, Xia S, Yang H, Chen Z, Li L, Wang W. Harnessing ultrasound in photocatalysis: Synthesis and piezo-enhanced effect: A review. ULTRASONICS SONOCHEMISTRY 2023; 99:106584. [PMID: 37678068 PMCID: PMC10495625 DOI: 10.1016/j.ultsonch.2023.106584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
The photocatalytic technique has drawn far-ranging interests in addressing the current issues; however, its property suffers from the limited visible light response and rapid recombination of carriers. To address these issues, two specific approaches have been proposed to enhance the photocatalytic activity: (1) ultrasound-assisted synthesis has been utilized to prepare photocatalysts, resulting in refined grain size, increased specific surface area, and reduced photogenerated carrier recombination; (2) sonophotocatalysis and piezoelectric enhanced photocatalysis have been developed to accelerate the reaction, which utilizes the synergism between ultrasound and light. On one side, sonophotocatalysis generates cavitation bubbles which induce more reactive radicals for redox reactions. On the other side, ultrasound induces deformation of the piezoelectric material structure, which changes the internal piezoelectric potential and improves the photocatalytic performance. Currently, intensive efforts have been devoted to related research and great progress has been reached with applications in pollutant degradation, new energy production, and other fields. This work starts by elucidating the fundamental concept of ultrasound-assisted photocatalyst synthesis and photocatalysis. Then, the synergistic behavior between ultrasonic and light in ultrasonic-assisted photocatalysis has been thoroughly discussed, including pollutant degradation, water splitting, and bacterial sterilization. Finally, the challenge and outlook are investigated and proposed.
Collapse
Affiliation(s)
- Chunyan Li
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xiaozhuo Wang
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Jianhao Wu
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Jingyang Gao
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Rixu Zhao
- China Construction Ready Mixed Concrete Co., Ltd., Wuhan 430070, China
| | - Sasa Xia
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhi Chen
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Lan Li
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China.
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Lu X, Shan T, Deng L, Li M, Pan X, Yang X, Zhao X, Yang MQ. Facile synthesis of hierarchical CdS nanoflowers for efficient piezocatalytic hydrogen evolution. Dalton Trans 2023; 52:13426-13434. [PMID: 37695161 DOI: 10.1039/d3dt02328a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Piezocatalytic hydrogen evolution has emerged as a promising field for the collection and utilization of mechanical energy, as well as for generating sustainable energy throughout the day. Hexagonal CdS, an established semiconductor photocatalyst, has been widely investigated for its ability to split water into H2. However, its piezocatalytic performance has received less attention, and the relationship between its structure and piezocatalytic activity remains unclear. In this study, we prepared 3D ultrathin CdS nanoflowers with high voltage electrical response and low impedance. In pure water, without the use of any cocatalyst, CdS exhibited a piezoelectric catalytic hydrogen production rate of 1.46 mmol h-1 g-1, which was three times higher than that of CdS nanospheres (0.46 mmol h-1 g-1). Furthermore, the value-added oxidation product H2O2 was produced during the process of piezoelectric catalysis. These findings provide new insights for the design of high-efficiency piezoelectric catalytic hydrogen production.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Tao Shan
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Lixun Deng
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Mengqing Li
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Xiaoyang Pan
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Xuhui Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Xiaojing Zhao
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Min-Quan Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P.R. China.
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou, 362000, China.
| |
Collapse
|
8
|
Dai B, Guo J, Gao C, Yin H, Xie Y, Lin Z. Recent Advances in Efficient Photocatalysis via Modulation of Electric and Magnetic Fields and Reactive Phase Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210914. [PMID: 36638334 DOI: 10.1002/adma.202210914] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The past several years has witnessed significant progress in enhancing photocatalytic performance via robust electric and magnetic fields' modulation to promote the separation and transfer of photoexcited carriers, and phase control at reactive interface to lower photocatalytic reaction energy barrier and facilitate mass transfer. These three research directions have received soaring attention in photocatalytic field. Herein, recent advances in photocatalysis modulated by electric field (i.e., piezoelectric, pyroelectric, and triboelectric fields, as well as their coupling) with specific examples and mechanisms discussion are first examined. Subsequently, the strategy via magnetic field manipulation for enhancing photocatalytic performance is scrutinized, including the spin polarization, Lorentz force, and magnetoresistance effect. Afterward, materials with tailored structure and composition design enabled by reactive phase control and their applications in photocatalytic hydrogen evolution and carbon dioxide reduction are reviewed. Finally, the challenges and potential opportunities to further boost photocatalytic efficiency are presented, aiming at providing crucial theoretical and experimental guidance for those working in photocatalysis, ferroelectrics, triboelectrics, piezo-/pyro-/tribo-phototronics, and electromagnetics, among other related areas.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Hang Yin
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 118425, Singapore
| |
Collapse
|
9
|
Xu S, Zhu W, Wu L, Zhang X, Li C, Wang Y, Yang Y. Pyro-photocatalytic Coupled Effect in Ferroelectric Bi 0.5Na 0.5TiO 3 Nanoparticles for Enhanced Dye Degradation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1276-1285. [PMID: 36580431 DOI: 10.1021/acsami.2c17710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Advanced oxidation processes (AOPs), achieved through the continuous attack of reactive oxygen species (ROS), are considered the most efficient way to mineralize organic pollutants. Among them, photocatalysis is the most environmentally friendly strategy for pollution mitigation but is hampered by low conversion efficiency. By exploiting the coupling effect without changing the properties of the semiconductor, the application of pyroelectric fields can significantly improve the catalytic performance. The degradation rate of rhodamine B by Bi0.5Na0.5TiO3 (BNT) nanoparticles under temperature fluctuations and visible light irradiation was up to 98%. The performance was enhanced by 216.54% and 31.48% compared to the pyroelectric catalysis and photocatalysis alone, respectively. The improved performance is due to the introduced pyroelectric potential with the imposition of temperature fluctuations, which can make the domains enhance the polarization of ferroelectrics, thus promoting the charge separation. This method can significantly advance the coupled pyro-photocatalytic reaction of ferroelectric semiconductors and also can enable the synergistic utilization of multiple energy sources such as solar and thermal energy, which is a promising strategy for environmental remediation.
Collapse
Affiliation(s)
- Suwen Xu
- College of Life and Environmental Sciences; School of Science; Optoelectronics Research Center, Minzu University of China, Beijing100081, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
| | - Wenxuan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning530004, PR China
| | - Li Wu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning530004, PR China
| | - Xiaoming Zhang
- College of Life and Environmental Sciences; School of Science; Optoelectronics Research Center, Minzu University of China, Beijing100081, P. R. China
| | - Chuanbo Li
- College of Life and Environmental Sciences; School of Science; Optoelectronics Research Center, Minzu University of China, Beijing100081, P. R. China
| | - Yuanhao Wang
- SUSTech Engineering Innovation Center, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, P. R. China
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning530004, PR China
| |
Collapse
|
10
|
Banoo M, Roy RS, Bhakar M, Kaur J, Jaiswal A, Sheet G, Gautam UK. Bi 4TaO 8Cl as a New Class of Layered Perovskite Oxyhalide Materials for Piezopotential Driven Efficient Seawater Splitting. NANO LETTERS 2022; 22:8867-8874. [PMID: 36346776 DOI: 10.1021/acs.nanolett.2c02900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Piezocatalytic water splitting is an emerging approach to generate "green hydrogen" that can address several drawbacks of photocatalytic and electrocatalytic approaches. However, existing piezocatalysts are few and with minimal structural flexibility for engineering properties. Moreover, the scope of utilizing unprocessed water is yet unknown and may widely differ from competing techniques due to the constantly varying nature of surface potential. Herein, we present Bi4TaO8Cl as a representative of a class of layered perovskite oxyhalide piezocatalysts with high hydrogen production efficiency and exciting tailorable features including the layer number, multiple cation-anion combination options, etc. In the absence of any cocatalyst and scavenger, an ultrahigh production rate is achievable (1.5 mmol g-1 h-1), along with simultaneous generation of value-added H2O2. The production rate using seawater is somewhat less yet appreciably superior to photocatalytic H2 production by most oxides as well as piezocatalysts and has been illustrated using a double-layer model for further development.
Collapse
Affiliation(s)
- Maqsuma Banoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab140306, India
| | - Raj Sekhar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab140306, India
| | - Monika Bhakar
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab140306, India
| | - Jaspreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab140306, India
| | - Aman Jaiswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab140306, India
| | - Goutam Sheet
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab140306, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab140306, India
| |
Collapse
|
11
|
Jia P, Li Y, Zheng Z, Wang Y, Liu T. Achieving excellent photocatalytic degradation of pollutants by flower-like SrBi4Ti4O15/BiOCl heterojunction: The promotion of piezoelectric effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Recent Advancements in Photocatalysis Coupling by External Physical Fields. Catalysts 2022. [DOI: 10.3390/catal12091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalysis is one of the most promising green technologies to utilize solar energy for clean energy achievement and environmental governance, such as artificial photosynthesis, water splitting, pollutants degradation, etc. Despite decades of research, the performance of photocatalysis still falls far short of the requirement of 5% solar energy conversion efficiency. Combining photocatalysis with the other physical fields has been proven to be an efficient way around this barrier which can improve the performance of photocatalysis remarkably. This review will focus on the recent advances in photocatalysis coupling by external physical fields, including Thermal-coupled photocatalysis (TCP), Mechanical-coupled photocatalysis (MCP), and Electromagnetism-coupled photocatalysis (ECP). In this paper, coupling mechanisms, materials, and applications of external physical fields are reviewed. Specifically, the promotive effect on photocatalytic activity by the external fields is highlighted. This review will provide a detailed and specific reference for photocatalysis coupling by external physical fields in a deep-going way.
Collapse
|
13
|
Ding D, Li Z, Yu S, Yang B, Yin Y, Zan L, Myung NV. Piezo-photocatalytic flexible PAN/TiO 2 composite nanofibers for environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153790. [PMID: 35150683 DOI: 10.1016/j.scitotenv.2022.153790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Mechanical vibrations and solar energy are ubiquitous in the environment. Hereon, we report the synergic enhancement of the oxidation by simultaneously harvesting solar and mechanical vibrations through flexible piezo and photocatalytic composite nanofiber mats. Surface enriched titanium dioxide nanoparticles incorporated in polyacrylonitrile (PAN/TiO2) nanofibers were synthesized using a single pot electrospinning process with well-defined fiber diameters with widely tunable loading density. By incorporating photocatalytic TiO2 in flexible piezoelectric PAN nanofiber support, piezoelectric fields generated under the mechanical deformation promote the separation of the photogenerated electrons and holes to accelerate oxidation of pollutants. Our results demonstrated that the catalytic activity of PAN/TiO2 nanofibers in photodegradation of Rhodamine B (RhB) can be greatly enhanced by environmental vibration-induced piezoelectricity of PAN nanofibers, with a maximum enhancement factor of ~2.5. The working mechanism for the enhanced photocatalytic activity of PAN/TiO2 nanofibers by the mechanical vibrations were attributed to the piezoelectric effect of PAN nanofibers, which could efficiently promote the separation of the photogenerated electrons and holes in the TiO2 nanoparticles. We believe the approach to enhancing the catalytic activity of mat can make full use of the polymer properties and natural energy, and it also can be extended to other composite polymer/semiconductor systems.
Collapse
Affiliation(s)
- Deng Ding
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Sooyung Yu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Bingxin Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Ling Zan
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Nosang Vincent Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
14
|
Ma X, Gao Y, Yang B, Lou X, Huang J, Ma L, Jing D. Enhanced charge separation in La 2NiO 4 nanoplates by coupled piezocatalysis and photocatalysis for efficient H 2 evolution. NANOSCALE 2022; 14:7083-7095. [PMID: 35476112 DOI: 10.1039/d2nr01202b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic hydrogen evolution is one promising method for solar energy conversion, but the rapid charge recombination limits its efficiency. To this end, in this work, grain size, and hence the charge carrier migration path, is reduced by lowering the synthesis temperature of two-dimensional visible light-responsive La2NiO4 perovskite. Interestingly, the hydrogen yield for the piezoelectric response of La2NiO4 under only 40 kHz ultrasonic vibration is as high as 680 μmol h-1 g-1, which is 80 times that under only 600 mW cm-2 visible light irradiation. More surprisingly, the hydrogen production rate under both light illumination and ultrasonic vibration is 129 times higher than under visible light irradiation alone. Clearly, a synergistic effect exists between piezocatalysis and photocatalysis. The hydrogen production activity of the samples with water splitting can reach 1097 μmol h-1 g-1 without any sacrificial reagent or co-catalyst, when the light intensity reaches about 1000 mW cm-2, which is a much higher hydrogen evolution rate by piezo-photocatalysis than is achieved by either piezocatalysis or photocatalysis individually. Further analysis indicates that the internal electric field generated by deformation of the La2NiO4 edge under piezoelectric action facilitates the directional separation and migration of photogenerated charges, which in turn significantly enhances the efficiency of use of photogenerated charges for hydrogen production. The investigation here provides a novel approach to design a new reaction system for hydrogen production by coupling multiple external physical fields.
Collapse
Affiliation(s)
- Xinyu Ma
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Yangfei Gao
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bian Yang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Xiaojie Lou
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jianbing Huang
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Lijing Ma
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Dengwei Jing
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
15
|
Mohanty R, Mansingh S, Parida K, Parida K. Boosting sluggish photocatalytic hydrogen evolution through piezo-stimulated polarization: a critical review. MATERIALS HORIZONS 2022; 9:1332-1355. [PMID: 35139141 DOI: 10.1039/d1mh01899j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To address the growing energy demand, remarkable progress has been made in transferring the fossil fuel-based economy to hydrogen-based environmentally friendly photocatalytic technology. However, the sluggish production rate due to the quick charge recombination and slow diffusion process needs careful engineering to achieve the benchmark photocatalytic efficiency. Piezoelectric photocatalysis has emerged as a promising field in recent years due to its improved catalytic performance facilitated by a built-in electric field that promotes the effective separation of excitons when subjected to mechanical stimuli. This review discusses the recent progress in piezo-photocatalytic hydrogen evolution while elaborating on the mechanistic pathway, effect of piezo-polarization and various strategies adopted to improve piezo-photocatalytic activity. Moreover, our review systematically emphasizes the fundamentals of piezoelectricity and piezo-phototronics along with the operational mechanism for designing efficient piezoelectric photocatalysts. Finally, the summary and outlooks provide insight into the existing challenges and outline the future prospects and roadmap for the development of next-generation piezo-photocatalysts towards hydrogen evolution.
Collapse
Affiliation(s)
- Ritik Mohanty
- Centre for Nanoscience and Nanotechnology, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | - Sriram Mansingh
- Centre for Nanoscience and Nanotechnology, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | - Kaushik Parida
- School of Materials Science and Engineering, Nanyang Technological University Singapore, 50 Nanyang Avenue 639798, Singapore
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| |
Collapse
|
16
|
Lin S, Wang Q, Huang H, Zhang Y. Piezocatalytic and Photocatalytic Hydrogen Peroxide Evolution of Sulfide Solid Solution Nano-Branches from Pure Water and Air. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200914. [PMID: 35403802 DOI: 10.1002/smll.202200914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen peroxide (H2 O2 ) as a useful chemical has a wide range of applications, and the development of efficient semiconducting materials for H2 O2 production is deemed as a promising strategy to realize the energy conversion. In this paper, Cdx Zn1-x S (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) nano-branches are fabricated and the piezocatalytic and photocatalytic H2 O2 evolution performance are studied. Under ultrasound condition, the H2 O2 yield of as-synthesized solid solutions is all higher than those of pristine ZnS and CdS, and optimal evolution rate achieves 21.9 µmol g-1 h-1 for Cd0.5 Zn0.5 S without any sacrificial agent, while it is increased to 151.6 µmol g-1 h-1 under visible light irradiation. The piezo/photoelectrochemical tests, piezoresponse force microscopy (PFM), and computational simulation reveal that the nano-branch structure benefits the mechanical energy conversion more, favoring the H2 O2 evolution for Cd0.5 Zn0.5 S, and a higher concentration of charge carriers is generated in photocatalysis. The active radical trapping and in situ electron spin resonance (ESR) experiments demonstrate that both of the H2 O2 generation pathways are originated from oxygen reduction by the sequential two-step single-electron reaction. This work opens a door for promoting the H2 O2 production from nanostructure and solid solution design.
Collapse
Affiliation(s)
- Sen Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qi Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| |
Collapse
|
17
|
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63976-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Cheng C, Liang Q, Yan M, Liu Z, He Q, Wu T, Luo S, Pan Y, Zhao C, Liu Y. Advances in preparation, mechanism and applications of graphene quantum dots/semiconductor composite photocatalysts: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127721. [PMID: 34865907 DOI: 10.1016/j.jhazmat.2021.127721] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Due to the low efficiency of single-component nano materials, there are more and more studies on high-efficiency composites. As zero dimensional (0D) non-metallic semiconductor material, the emergence of graphene quantum dots (GQDs) overcomes the shortcomings of traditional photocatalysts (rapid rate of electron-hole recombination and narrow range of optical response). Their uniqueness is that they can combine the advantages of quantum dots (rich functional groups at edge) and sp2 carbon materials (large specific surface area). The inherent inert carbon stabilizes chemical and physical properties, and brings new breakthroughs to the development of benchmark photocatalysts. The photocatalytic efficiency of GQDs composite with semiconductor materials (SCs) can be improved by the following three points: (1) accelerating charge transfer, (2) extending light absorption range, (3) increasing active sites. The methods of preparation (bottom-up and top-down), types of heterojunctions, mechanisms of photocatalysis, and applications of GQDs/SCs (wastewater treatment, energy storage, gas sensing, UV detection, antibiosis and biomedicine) are comprehensively discussed. And it is hoped that this review can provide some guidance for the future research on of GQDs/SCs on photocatalysis.
Collapse
Affiliation(s)
- Chunyu Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenhui Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
19
|
Lin S, Li S, Huang H, Yu H, Zhang Y. Synergetic Piezo-Photocatalytic Hydrogen Evolution on Cd x Zn 1-x S Solid-Solution 1D Nanorods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106420. [PMID: 34936197 DOI: 10.1002/smll.202106420] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Conversion of solar and mechanical vibration energies for catalytic water splitting into H2 has gained substantial attention recently. However, the sluggish charge separation and inefficient energy utilization in photocatalytic and piezocatalytic processes severely restrict the catalytic activity. In this paper, efficient piezo-photocatalytic H2 evolution from water splitting is realized via simultaneously converting solar and vibration energy over one-dimensional (1D) nanorod-structured Cdx Zn1-x S (x = 0, 0.2, 0.4, 0.6, 0.8, 1) solid solutions. Under combined visible light and ultrasound irradiation, Cd0.4 Zn0.6 S 1D nanorods deliver a prominently synergetic piezo-photocatalytic H2 yield rate of 4.45 mmol g-1 h-1 , far exceeding that under sole ultrasound or illumination. The consumedly promoted catalytic activity of Cd0.4 Zn0.6 S is attributed to strengthened charge separation by piezo-potential as disclosed by light-assisted scanning Kelvin probe force microscopy (SKPFM), increased strain sensitivity, and desirable optimization between piezoelectricity and visible-light response due to the formation of 1D configuration and solid solution. Metal and metal oxide depositions disclose that reduction and oxidation reactions separately occur at the tips and lateral edges of the Cd0.4 Zn0.6 S nanorods, in which the spatially separated reactive sites also contribute to super catalytic activity. This work is expected to inspire a new design strategy of coupled catalysis reactions for efficient renewable fuel production.
Collapse
Affiliation(s)
- Sen Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Shutao Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Han Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| |
Collapse
|
20
|
Jiang Z, Tan X, Huang Y. Piezoelectric effect enhanced photocatalysis in environmental remediation: State-of-the-art techniques and future scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150924. [PMID: 34655628 DOI: 10.1016/j.scitotenv.2021.150924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis has been widely used as an advanced oxidation process to control pollutants effectively. However, environmental photocatalysis' decontamination efficiency is restricted to the photogenerated electron-hole pairs' rapid recombination. Recently, emerging investigations have been directed to generate internal electric field by piezoelectric effect to enhance the separation efficiency of photogenerated charge carriers for better photocatalytic performance; however, there are still huge knowledge gaps on the rational application of piezo-photocatalysis in environmental remediation and disinfection. Thus, we have conducted a comprehensive review to better understand the physicochemical properties of piezoelectric materials (non-centrosymmetric crystal structures, piezoelectric coefficient, Young's modulus, and etc.) and current study states. We also elucidated the strategy of piezo-photo catalysis system constructions (mono-component, core-shell structure, and etc.) and underlying mechanisms of enhanced remediation performance. Addressing the current challenges and future scenarios (degradation of organic pollutants, disinfection, and etc.), the present review would shed light on the advanced wastewater treatment development towards sustainable control of emerging containments.
Collapse
Affiliation(s)
- Zhenying Jiang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Xianjun Tan
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Yuxiong Huang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
21
|
Liang X, Shi X, Zou X, Wang Z, Cheng Z. Synergetic degradation of organic dyes and Cr( vi) by the piezocatalytic BZT- xBCT. NEW J CHEM 2022. [DOI: 10.1039/d1nj06127e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, piezo-catalysts have gained considerable attention owing to their unique ability to degrade pollutants by harvesting trivial mechanical energy from the surrounding environment.
Collapse
Affiliation(s)
- Xiuchen Liang
- School of Materials Science and Engineering, Jiangsu Key lab. of Construction Materials, Southeast University, Nanjing 211189, P. R. China
| | - Xueru Shi
- School of Materials Science and Engineering, Jiangsu Key lab. of Construction Materials, Southeast University, Nanjing 211189, P. R. China
| | - Xuexue Zou
- School of Materials Science and Engineering, Jiangsu Key lab. of Construction Materials, Southeast University, Nanjing 211189, P. R. China
| | - Zengmei Wang
- School of Materials Science and Engineering, Jiangsu Key lab. of Construction Materials, Southeast University, Nanjing 211189, P. R. China
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronics Materials, University of Wollongong, Innovation Campus, North Wollongong, NSW 2500, Australia
| |
Collapse
|
22
|
Lei R, Fu X, Chen N, Chen Y, Feng W, Liu P. Cocatalyst engineering to weaken the charge screening effect over Au–Bi 4Ti 3O 12 for piezocatalytic pure water splitting. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01422j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The weak driving force and rapid carrier recombination severely restrict the development and utilization of piezocatalysis, but the important reason is the charge screening effect.
Collapse
Affiliation(s)
- Rui Lei
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350016, P.R. China
| | - Xianzhi Fu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350016, P.R. China
| | - Naxin Chen
- A Harmony Photocatalytic Environment Protection Technology (Hangzhou) Co., LTD, Hangzhou, 310000, P. R. China
| | - Yifeng Chen
- A Harmony Photocatalytic Environment Protection Technology (Hangzhou) Co., LTD, Hangzhou, 310000, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, 410022, P. R. China
| | - Ping Liu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350016, P.R. China
| |
Collapse
|
23
|
Dai B, Biesold GM, Zhang M, Zou H, Ding Y, Wang ZL, Lin Z. Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chem Soc Rev 2021; 50:13646-13691. [PMID: 34821246 DOI: 10.1039/d1cs00506e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals). Importantly, the mechanisms of how the piezo-phototronic effect controls the optoelectronic processes and the recent progress and applications in the above-mentioned materials and devices are highlighted and summarized. Only photocatalysts, solar cells, photodetectors, and LEDs that display piezo-phototronic behavior are reviewed. Material and structural design, property characterization, theoretical simulation calculations, and mechanism analysis are then examined as strategies to further enhance the quantum yield efficiency of optoelectronic devices via the piezo-phototronic effect. This comprehensive overview will guide future fundamental and applied studies that capitalize on the piezo-phototronic effect for energy conversion and storage.
Collapse
Affiliation(s)
- Baoying Dai
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Haiyang Zou
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
24
|
Li H, Xiong Y, Wang Y, Ma W, Fang J, Li X, Han Q, Liu Y, He C, Fang P. High piezocatalytic capability in CuS/MoS 2 nanocomposites using mechanical energy for degrading pollutants. J Colloid Interface Sci 2021; 609:657-666. [PMID: 34838313 DOI: 10.1016/j.jcis.2021.11.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022]
Abstract
Piezocatalysis, driven by mechanical energy and piezoelectric effect, is of great potential in addressing the environmental issues. In this work, a piezoelectric catalyst was fabricated by growing few-layer MoS2 nanosheets onto CuS, for the piezocatalytic degradation of Rhodamine B (RhB), methylene blue (MB) and hexavalent chromium (Cr (VI)). The excellent removal efficiency of Cr (VI) and RhB can be reached 100% within 180 s, through the piezocatalysis of CuS/MoS2-0.6 driven by mechanical stirring in the dark. Impressively, the piezoelectric current of CuS/MoS2-0.6 is 48 and 35.7 times higher than that of pure CuS and MoS2, respectively. The significantly enhanced piezocatalytic performance can be ascribed to the formation of CuS/MoS2 heterojunction and the piezoelectric field generated by MoS2 nanosheets, which promotes the efficient separation of electrons and holes. This study provides insights into strategies to improve catalytic performance through utilizing mechanical energy and opens a new horizon for environmental remediation.
Collapse
Affiliation(s)
- Hongjing Li
- School of Physics and Technology, Key Laboratory of Nuclear Solid State Physics Hubei Province, Wuhan University, Wuhan 430072, China
| | - Yi Xiong
- School of Physics and Technology, Key Laboratory of Nuclear Solid State Physics Hubei Province, Wuhan University, Wuhan 430072, China; Science and Technology Institute, Laboratory for Electron Microscopy, Wuhan Textile University, Wuhan 430073, China
| | - Yumin Wang
- School of Physics and Technology, Key Laboratory of Nuclear Solid State Physics Hubei Province, Wuhan University, Wuhan 430072, China
| | - Wenmei Ma
- School of Physics and Technology, Key Laboratory of Nuclear Solid State Physics Hubei Province, Wuhan University, Wuhan 430072, China
| | - Jiapeng Fang
- School of Physics and Technology, Key Laboratory of Nuclear Solid State Physics Hubei Province, Wuhan University, Wuhan 430072, China
| | - Xu Li
- School of Physics and Technology, Key Laboratory of Nuclear Solid State Physics Hubei Province, Wuhan University, Wuhan 430072, China
| | - Qing Han
- School of Physics and Technology, Key Laboratory of Nuclear Solid State Physics Hubei Province, Wuhan University, Wuhan 430072, China
| | - Yong Liu
- School of Physics and Technology, Key Laboratory of Nuclear Solid State Physics Hubei Province, Wuhan University, Wuhan 430072, China
| | - Chunqing He
- School of Physics and Technology, Key Laboratory of Nuclear Solid State Physics Hubei Province, Wuhan University, Wuhan 430072, China
| | - Pengfei Fang
- School of Physics and Technology, Key Laboratory of Nuclear Solid State Physics Hubei Province, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
25
|
Lei H, Wu M, Liu Y, Mo F, Chen J, Ji S, Zou Y, Dong X. Built-in piezoelectric field improved photocatalytic performance of nanoflower-like Bi2WO6 using low-power white LEDs. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Li X, Wang W, Dong F, Zhang Z, Han L, Luo X, Huang J, Feng Z, Chen Z, Jia G, Zhang T. Recent Advances in Noncontact External-Field-Assisted Photocatalysis: From Fundamentals to Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05354] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xibao Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Weiwei Wang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Fan Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhiqiang Zhang
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Lu Han
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xudong Luo
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Juntong Huang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhijun Feng
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi Chen
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
27
|
Zhang M, Zhao S, Zhao Z, Li S, Wang F. Piezocatalytic Effect Induced Hydrogen Production from Water over Non-noble Metal Ni Deposited Ultralong GaN Nanowires. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10916-10924. [PMID: 33635070 DOI: 10.1021/acsami.0c21976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Piezoelectric material-based catalysis that relies on an external stress-induced piezopotential has been demonstrated to be an effective strategy toward various chemical reactions. In this work, non-noble metal Ni-decorated ultralong monocrystal GaN nanowires (NWs) were prepared through a chemical vapor deposition (CVD) technique, followed by a photodeposition method. The piezocatalytic activity of the GaN NWs was enhanced by ∼9 times after depositing the Ni cocatalyst, generating hydrogen gas of ∼88.3 μmol·g-1·h-1 under ultrasonic vibration (110 W and 40 kHz), which is comparable to that of Pt-loaded GaN NWs. Moreover, Ni/GaN NWs with smaller diameters (∼100 nm) demonstrated superior piezocatalytic efficiency, which can be attributed to the large piezoelectric potential evidenced by both finite-element analysis and piezoresponse force microscopy measurements. These results demonstrate the promising application potential of non-noble metal loaded GaN nanostructures in hydrogen generation driven by weak mechanical energy from the surrounding environment.
Collapse
Affiliation(s)
- Mingxiang Zhang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiyin Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhicheng Zhao
- Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, China
| | - Shun Li
- Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, China
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fei Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
- GaN Device Engineering Technology Research Center of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Hu C, Tu S, Tian N, Ma T, Zhang Y, Huang H. Photocatalysis Enhanced by External Fields. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Shuchen Tu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Na Tian
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Tianyi Ma
- Discipline of Chemistry University of Newcastle Callaghan NSW 2308 Australia
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes School of Materials Science and Technology China University of Geosciences Beijing 100083 P. R. China
| |
Collapse
|
29
|
Hu C, Tu S, Tian N, Ma T, Zhang Y, Huang H. Photocatalysis Enhanced by External Fields. Angew Chem Int Ed Engl 2021; 60:16309-16328. [PMID: 32770594 DOI: 10.1002/anie.202009518] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2021] [Indexed: 11/12/2022]
Abstract
The efficient conversion of solar energy by means of photocatalysis shows huge potential to relieve the ongoing energy crisis and increasing environmental pollution. However, unsatisfactory conversion efficiency still hinders its practical application. The introduction of external fields can remarkably enhance the photocatalytic performance of semiconductors from the inside out. This review focuses on recent advances in the application of diverse external fields, including microwaves, mechanical stress, temperature gradient, electric field, magnetic field, and coupled fields, to boost photocatalytic reactions, for applications in, for example, contaminant degradation, water splitting, CO2 reduction, and bacterial inactivation. The relevant reinforcement mechanisms of photoabsorption, the transport and separation of photoinduced charges, and adsorption of reagents by the external fields are highlighted. Finally, the challenges and outlook for the development of external-field-enhanced photocatalysis are presented.
Collapse
Affiliation(s)
- Cheng Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Shuchen Tu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Na Tian
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Tianyi Ma
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| |
Collapse
|
30
|
Sheng J, Wang C, Duan F, Yan S, Lu S, Zhu H, Du M, Chen X, Chen M. Direct Z-scheme CdS–NiPc heterojunctions as noble metal-free photocatalysts for enhanced photocatalytic hydrogen evolution. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01495a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct Z-scheme CdS-NiPc heterojunction was successfully synthesized by a one-step hydrothermal method. The optimal photocatalytic H2 production rate could reach 17.74 mmol h−1 g−1, which was 19.1 times higher than that of the pure CdS sample.
Collapse
Affiliation(s)
- Jialiang Sheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Chunqiang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shengrong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
31
|
Fan J, Xiong J, Liu D, Tang Y, He S, Hu Z. A cathodic photocorrosion-assisted strategy to construct a CdS/Pt heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution. NEW J CHEM 2021. [DOI: 10.1039/d1nj01711j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy based on the cathodic photocorrosion effect of CdS was developed to fabricate a CdS/Pt heterojunction photocatalyst, achieving a remarkable enhancement for H2 evolution.
Collapse
Affiliation(s)
- Jianming Fan
- Fujian Provincial Key Laboratory of Clean Energy Materials
- Longyan University
- Longyan 364000
- P. R. China
| | - Jinhua Xiong
- Fujian Provincial Key Laboratory of Clean Energy Materials
- Longyan University
- Longyan 364000
- P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment
| | - Dayue Liu
- Fujian Provincial Key Laboratory of Clean Energy Materials
- Longyan University
- Longyan 364000
- P. R. China
| | - Yuanping Tang
- Fujian Provincial Key Laboratory of Clean Energy Materials
- Longyan University
- Longyan 364000
- P. R. China
| | - Song He
- Fujian Provincial Key Laboratory of Clean Energy Materials
- Longyan University
- Longyan 364000
- P. R. China
| | - Zhibiao Hu
- Fujian Provincial Key Laboratory of Clean Energy Materials
- Longyan University
- Longyan 364000
- P. R. China
| |
Collapse
|
32
|
Liu Y, Pan D, Xiong M, Tao Y, Chen X, Zhang D, Huang Y, Li G. In-situ fabrication SnO2/SnS2 heterostructure for boosting the photocatalytic degradation of pollutants. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63498-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Dai B, Chen Y, Hao SM, Huang H, Kou J, Lu C, Lin Z, Xu Z. Sustainable Internal Electric Field for Enhanced Photocatalysis: From Material Design to Energy Utilization. J Phys Chem Lett 2020; 11:7407-7416. [PMID: 32794709 DOI: 10.1021/acs.jpclett.0c00889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The intrinsic internal electric field in a ferroelectric photocatalyst is beneficial for improving the photocatalytic properties because of its positive effect on the separation and migration of photogenerated carriers. However, this kind of internal electric field is static and easily saturated by inner and outer shielding effects, seriously restricting its potential in photocatalysis. To overcome this problem, a sustainable internal electric field was introduced into photocatalysis based on piezoelectric and pyroelectric effect, which exhibits good capability in consistently boosting photocatalytic activity, thus becoming a hot research topic. In this Perspective we summarize the recent significant progress in the construction of sustainable internal electric fields for facilitating photocatalysis from material design to energy utilization. Moreover, the fascinating influence of sustainable internal electric fields on carrier behavior is also discussed. Finally, a summary and outlook for building a sustainable internal electric field to further enhance photocatalytic performance are provided.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P.R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yukai Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P.R. China
| | - Shu-Meng Hao
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hengming Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P.R. China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P.R. China
| | - Chunhua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P.R. China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhongzi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, P.R. China
| |
Collapse
|
34
|
|
35
|
Liu Z, Yu X, Li L. Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63431-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|