1
|
Ge J, Mao W, Wang X, Zhang M, Liu S. The Fluorescent Detection of Glucose and Lactic Acid Based on Fluorescent Iron Nanoclusters. SENSORS (BASEL, SWITZERLAND) 2024; 24:3447. [PMID: 38894238 PMCID: PMC11174429 DOI: 10.3390/s24113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
In this paper, a novel fluorescent detection method for glucose and lactic acid was developed based on fluorescent iron nanoclusters (Fe NCs). The Fe NCs prepared using hemin as the main raw material exhibited excellent water solubility, bright red fluorescence, and super sensitive response to hydrogen peroxide (H2O2). This paper demonstrates that Fe NCs exhibit excellent peroxide-like activity, catalyzing H2O2 to produce hydroxyl radicals (•OH) that can quench the red fluorescence of Fe NCs. In this paper, a new type of glucose sensor was established by combining Fe NCs with glucose oxidase (GluOx). With the increase in glucose content, the fluorescence of Fe NCs decreases correspondingly, and the glucose content can be detected in the scope of 0-200 μmol·L-1 (μM). Similarly, the lactic acid sensor can also be established by combining Fe NCs with lactate oxidase (LacOx). With the increase in lactic acid concentration, the fluorescence of Fe NCs decreases correspondingly, and the lactic acid content can be detected in the range of 0-100 μM. Furthermore, Fe NCs were used in the preparation of gel test strip, which can be used to detect H2O2, glucose and lactic acid successfully by the changes of fluorescent intensity.
Collapse
Affiliation(s)
| | | | | | | | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China; (J.G.); (W.M.); (X.W.); (M.Z.)
| |
Collapse
|
2
|
Wang Y, Wang T, Huang K, Liu L, Yin J, Sun W, Yu F, Yao W, Li X, Liu X, Jiang H, Wang X. In situ monitoring of cytoplasmic dopamine levels by noble metals decorated carbon fiber tips. Biosens Bioelectron 2024; 250:116087. [PMID: 38295583 DOI: 10.1016/j.bios.2024.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/28/2024] [Indexed: 02/02/2024]
Abstract
Dopamine (DA), a catecholamine neurotransmitter, is crucial in brain signal transmission. Monitoring cytoplasmic DA levels can reflect changes in metabolic factors and provide valuable information for researching the mechanisms involved in neurodegenerative diseases. However, the in-situ detection of intracellular DA is constrained by its low contents in small-sized single cells. In this work, we report that noble metal (Au, Pt)-modified carbon fiber micro-nanoelectrodes are capable of real-time detection of DA in single cells with excellent sensitivity, selectivity, and anti-contamination capabilities. Notably, noble metals can be modified on the electrode surface through electrochemical deposition to enhance the conductivity of the electrode and the oxidation current of DA by 50 %. The nanosensors can work stably and continuously in rat adrenal pheochromocytoma cells (PC12) to monitor changes in DA levels upon K+ stimulation. The functionalized carbon fibers based nanosensors will provide excellent prospects for DA analysis in the brains of living animals.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China; Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, PR China
| | - Tingya Wang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, PR China
| | - Ke Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Jiajia Yin
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Fangfang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Xintong Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
3
|
Sun L, Chen LG, Wang HB. Fenton-like reaction triggered chemical redox-cycling signal amplification for ultrasensitive fluorometric detection of H 2O 2 and glucose. Analyst 2024; 149:546-552. [PMID: 38088105 DOI: 10.1039/d3an01682j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
An ultrasensitive fluorescent biosensor is reported for glucose detection based on a Fenton-like reaction triggered chemical redox-cycling signal amplification strategy. In this amplified strategy, Cu2+ oxidizes chemically o-phenylenediamine (OPD) to generate photosensitive 2,3-diaminophenazine (DAP) and Cu+/Cu0. On the one hand, the generated Cu0 catalyzes the oxidation of OPD. On the other hand, H2O2 reacts with Cu+ to produce hydroxyl radicals (˙OH) and Cu2+ through a Cu+-mediated Fenton-like reaction. The generated ˙OH and recycled Cu2+ ions take turns oxidizing OPD to produce more photoactive DAP, triggering a self-sustaining chemical redox-cycling reaction and a remarkable fluorescent enhancement. It is worth mentioning that the cascade reaction did not stop until OPD molecules were completely consumed. Benefiting from H2O2-triggered chemical redox-cycling signal amplification, the strategy was exploited for the development of an ultrasensitive fluorescent biosensor for glucose determination. Glucose content monitoring was realized with a linear range from 1 nM to 1 μM and a limit of detection of 0.3 nM. This study validates the practicability of the chemical redox-cycling signal amplification on the fluorescent bioanalysis of glucose in human serum samples. It is expected that the method offers new opportunities to develop ultrasensitive fluorescent analysis strategy.
Collapse
Affiliation(s)
- Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China.
| |
Collapse
|
4
|
Huang K, Wang Y, Qin Z, Liu H, Zhang H, Wang J, Li X, Liu X, Jiang H, Wang X. Ultrafast Subcellular Biolabeling and Bioresponsive Real-Time Monitoring for Targeting Cancer Theranostics. ACS Sens 2023; 8:3563-3573. [PMID: 37697622 DOI: 10.1021/acssensors.3c01210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Cell heterogeneity poses a formidable challenge for tumor theranostics, requiring high-resolution strategies for intercellular bioanalysis between single cells. Nanoelectrode-based electrochemical analysis has attracted much attention due to its advantages of label-free characteristics, relatively low cost, and ultra-high resolution for single-cell analysis. Here, we have designed and developed a subcellular biolabeling and bioresponsive real-time monitoring strategy for precise bioimaging-guided cancer diagnosis and theranostics. Our observations revealed the apparent intracellular migration of biosynthetic Au nanoclusters (Au NCs) at different subcellular locations, i.e., from the mitochondria to the mitochondrion-free region in the cytoplasm, which may be helpful for controlling over the biosynthesis of Au NCs. Considering the precise biolabeling advantage of the intracellular biosynthetic Au NCs for biomedical imaging of cancers, it is important to realize the biosynthetic Au NC-enabled precise control in real-time theranostics of cancer cells. Therefore, this work raises the possibility to achieve subcellular monitoring of H2O2 for targeting cancer theranostics, thereby providing a new way to explore the underlying mechanism and imaging-guided tumor theranostics.
Collapse
Affiliation(s)
- Ke Huang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yihan Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhaojian Qin
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Zhang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinpeng Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xintong Li
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Fei J, Yang W, Dai Y, Xu W, Fan H, Zheng Y, Zhang J, Zhu W, Hong J, Zhou X. A biosensor based on Fe 3O 4@MXene-Au nanocomposites with high peroxidase-like activity for colorimetric and smartphone-based detection of glucose. Mikrochim Acta 2023; 190:336. [PMID: 37515610 DOI: 10.1007/s00604-023-05900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
A novel magnetic nanozyme Fe3O4@MXene-Au nanocomposite, which possessed higher peroxidase-like activity than that of Fe3O4 nanoparticles and Fe3O4@MXene nanocomposites, was developed. The outstanding magnetic properties of the nanozyme endowed it with the ability of simple and rapid separation, achieving great recyclability. Based on Fe3O4@MXene-Au nanocomposites and glucose oxidase (Glu Ox), a highly selective colorimetric biosensor for glucose detection was developed. Fe3O4@MXene-Au nanocomposites can catalyze H2O2 produced from glucose catalyzed by glucose oxidase to ·OH and oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) with a significant absorbance at 652 nm. The linear range of glucose was 0-1.4 mM under optimal conditions, with a limit of detection (LOD) of 0.11 mM. Glucose in human whole blood was successfully detected with satisfactory recoveries. Furthermore, a facile agarose hydrogel detection platform was designed. With smartphone software, glucose detection can be realized by the agarose hydrogel platform, demonstrating the potential in on-site and visual detection of glucose.
Collapse
Affiliation(s)
- Jianwen Fei
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yin Dai
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Huizhu Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yani Zheng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
6
|
Gao M, Li J, Qiu L, Xia X, Cheng X, Xu F, Xu G, Wei F, Yang J, Hu Q, Cen Y. Glucose and pH responsive fluorescence detection system based on simple synthesis of silicon-coated perovskite quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122212. [PMID: 36512959 DOI: 10.1016/j.saa.2022.122212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Perovskite quantum dots (PQDs) are extremely unstable in ambient air due to their inherent structural instability, which limits the wide application of PQDs. In this work, silicon-coated CsPbBr3 PQDs (CsPbBr3@SiO2) was synthesized via a simple method. The SiO2 coating effectively isolated PQDs from water and oxygen in the environment, which were the main elements that destroyed the structure stability of PQDs. The synthesized CsPbBr3@SiO2 can be stored in water for more than 2 months and posessed wonderful dispersibility in aqueous solution. The fluorescence intensity remained unchanged within 7 days and only decreased by 11.9 % within 2 months. We found that CsPbBr3@SiO2 was extremely sensitive to environmental pH, and the fluorescence intensity decreased with the reduction of pH. In addition, an excellent linear relationship with pH value in the range of 1.0 ∼ 5.0 was achieved. As we all known that glucose can be catalyzed by glucose oxidase to produce gluconic acid and hydrogen peroxide, in which a good deal of protons were produced and the pH was gradually lowered. Since CsPbBr3@SiO2 was stable to water and oxygen, and sensitive to ambient pH, we applied CsPbBr3@SiO2 to the detection of glucose. CsPbBr3@SiO2 showed fantastic selectivity and sensitivity to glucose, and the detection limit can even reach 18.5 μM. Furthermore, CsPbBr3@SiO2 was successfully applied to the detection of glucose in the human serum with satisfactory performance.
Collapse
Affiliation(s)
- Mingcong Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Jiawei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Lei Qiu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xia Cheng
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Toxicology, Ningde Normal University, Ningde, Fujian 352000, PR China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
7
|
Sciurti E, Biscaglia F, Prontera C, Giampetruzzi L, Blasi L, Francioso L. Nanoelectrodes for Intracellular and Intercellular electrochemical detection: working principles, fabrication techniques and applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Noori F, Almasi Kashi M, Montazer AH. Current density-induced emergence of soft and hard magnetic phases in Fe nanowire arrays. NANOTECHNOLOGY 2022; 34:075701. [PMID: 36347028 DOI: 10.1088/1361-6528/aca0f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The capability of generating magnetically soft and hard phases in a material is important in many aspects, ranging from basic science to applications. Here, the emergence of soft and hard magnetic phases is reported in Fe nanowire (NW) arrays with a diameter of 35 nm fabricated by using a pulsed electrochemical deposition method in porous aluminum oxide templates under different current density (Cd) values in the range of 25-100 mA cm-2. The variation ofCdinfluences the grain size, crystallinity, electrodeposition efficiency and length of the Fe NWs, as characterized by x-ray diffraction, high-resolution transmission electron microscopy, vibrating sample magnetometry and field-emission scanning electron microscopy. IncreasingCdfrom 25 to 80 mA cm-2results in a significant decrease in coercivity and squareness from 1590 to 900 Oe and 0.9 to 0.5, respectively, inducing the soft and hard phases along the length of Fe NWs. Further increasing theCdleads to the separation of the phases, as evidenced by first-order reversal curve analysis. From a theoretical aspect, the emergence of the soft phase may lead to the occurrence of the fanning reversal mode in the NWs, for which there is no precedent in previous experimental investigations.
Collapse
Affiliation(s)
- Farzaneh Noori
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317_53153, Iran
| | - Mohammad Almasi Kashi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317_53153, Iran
- Department of Physics, University of Kashan, Kashan 87317_53153, Iran
| | - Amir H Montazer
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317_53153, Iran
| |
Collapse
|
9
|
Responsive Ag@NiCo 2O 4 Nanowires Anchored on N-Doped Carbon Cloth as Array Electrodes for Nonenzymatic Glucose Sensing. Molecules 2022; 27:molecules27227745. [PMID: 36431840 PMCID: PMC9695565 DOI: 10.3390/molecules27227745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The development of responsive materials in a predictable manner is high on the list of the material industry's trends. In this work, responsive Ag@NiCo2O4 nanowires were, firstly, anchored on N-doped carbon cloth (NC) and, then, employed as array electrodes for a nonenzymatic glucose-sensing application. The results showed that the highly conductive NiCo2O4 nanowires supported Ag nanoparticles and exhibited high conductivity and electrocatalytic properties. The fully exposed crystalline planes of Ag nanoparticles provided more active surface sites. As a result, the assembled Ag@NiCo2O4-NC electrodes for the glucose-sensing evaluation delivered a selectivity of 2803 μA mM-1 cm-2 and a detection limit of 1.065 μM, which outperformed the literature-reported Ag- and NiCo2O4-based glucose-sensing catalysts.
Collapse
|
10
|
Pan XT, Yang XY, Mao TQ, Liu K, Chen ZZ, Ji LN, Jiang DC, Wang K, Gu ZZ, Xia XH. Super-Long SERS Active Single Silver Nanowires for Molecular Imaging in 2D and 3D Cell Culture Models. BIOSENSORS 2022; 12:bios12100875. [PMID: 36291012 PMCID: PMC9599576 DOI: 10.3390/bios12100875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 05/21/2023]
Abstract
Establishing a systematic molecular information analysis strategy for cell culture models is of great significance for drug development and tissue engineering technologies. Here, we fabricated single silver nanowires with high surface-enhanced Raman scattering activity to extract SERS spectra in situ from two-dimensional (2D) and three-dimensional (3D) cell culture models. The silver nanowires were super long, flexible and thin enough to penetrate through multiple cells. A single silver nanowire was used in combination with a four-dimensional microcontroller as a cell endoscope for spectrally analyzing the components in cell culture models. Then, we adopted a machine learning algorithm to analyze the obtained spectra. Our results show that the abundance of proteins differs significantly between the 2D and 3D models, and that nucleic acid-rich and protein-rich regions can be distinguished with satisfactory accuracy.
Collapse
Affiliation(s)
- Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuan-Ye Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Qi Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zao-Zao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Correspondence: (L.-N.J.); (D.-C.J.); (K.W.)
| | - De-Chen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Correspondence: (L.-N.J.); (D.-C.J.); (K.W.)
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Correspondence: (L.-N.J.); (D.-C.J.); (K.W.)
| | - Zhong-Ze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Fu Q, Zhou X, Wang M, Su X. Nanozyme-based sensitive ratiometric fluorescence detection platform for glucose. Anal Chim Acta 2022; 1216:339993. [DOI: 10.1016/j.aca.2022.339993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/06/2023]
|
12
|
RuO 2/rGO heterostructures as mimic peroxidases for colorimetric detection of glucose. Mikrochim Acta 2022; 189:261. [PMID: 35727400 DOI: 10.1007/s00604-022-05319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
The successful synthesis of ruthenium oxide/reduced graphene oxide (RuO2/rGO) heterostructures by one-pot hydrothermal method using graphene oxides and RuCl3 as precursors is reported. The heterostructures had high peroxidase-like (POD-like) activities, which catalyzes the oxidation of classical peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to create a blue colored reaction product. The catalytic activity was significantly enhanced by the synergistic effect between RuO2 nanoparticles and rGO. RuO2/rGO had a low Km of 0.068 mM and a high vmax of 1.228 × 10-7 M·s-1 towards TMB in the TMB-H2O2 catalytic oxidation system. In addition, the POD-like activity originating from the electron transfer mechanism was confirmed by cytochrome C (Cyt C) oxidation experiment. A colorimetric method based on RuO2/rGO heterostructures was developed with good sensitivity and selectivity for glucose detection with a limit of detection of 3.34 μM and a linear range of 0-1500 μM. The RuO2/rGO heterostructures have potential applications in the biomedical areas, such as biosensor and diagnostics.
Collapse
|
13
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
14
|
Liu YL, Zhao YX, Li YB, Ye ZY, Zhang JJ, Zhou Y, Gao TY, Li F. Recent Advances of Nanoelectrodes for Single-Cell Electroanalysis: From Extracellular, Intercellular to Intracellular. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Wu WT, Chen X, Jiao YT, Fan WT, Liu YL, Huang WH. Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione. Angew Chem Int Ed Engl 2022; 61:e202115820. [PMID: 35134265 DOI: 10.1002/anie.202115820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/08/2022]
Abstract
The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.
Collapse
Affiliation(s)
- Wen-Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Jiao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
16
|
Wu W, Chen X, Jiao Y, Fan W, Liu Y, Huang W. Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yu‐Ting Jiao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wen‐Ting Fan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan‐Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wei‐Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
17
|
A plug-and-play optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations. Biosens Bioelectron 2022; 198:113798. [PMID: 34823961 DOI: 10.1016/j.bios.2021.113798] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022]
Abstract
A plug-and-play surface plasmon resonance (SPR) dual-parameter optical fiber biosensor is reported, in which Au film was firstly coated on the fiber surface for exciting SPR and the end half of the Au film was modified with Au nanoparticles to generate double SPR resonance valleys. For simultaneous detecting of glucose and cholesterol concentrations, modified P-mercaptophenylboronic acid (PMBA) and β-cyclodextrin (β-CD) were subsequently coated on the surface of sensor probe. Due to the cis-diol structure of glucose, it can interact with PMBA, leading to a red shift of one SPR resonant valley, whose maximum wavelength shift is 11.228 nm in the range of 0-1.7 mM glucose concentration. On the same time, the cholesterol molecules can realize the host-guest combination with β-CD, leading to a red shift of another SPR resonant valley, and the maximum wavelength shift is 18.893 nm in the cholesterol concentration range of 0-300 nM. The detection limits of the sensor to glucose and cholesterol are 0.00078 mM and 0.012 nM, respectively. The enhances the practical value of the dual-parameter sensor. Both theory and experiment results verify the feasibility of the "plug-and-play" sensor to measure the dual biomass of glucose and cholesterol with ultra-low detection limit and good selectivity. The proposed method provides a huge research value for the optical fiber sensor in multi-parameter measurement.
Collapse
|
18
|
Hydrogen-assisted synthesis of Ni-ZIF-derived nickel nanoparticle chains coated with nitrogen-doped graphitic carbon layers as efficient electrocatalysts for non-enzymatic glucose detection. Mikrochim Acta 2022; 189:80. [DOI: 10.1007/s00604-022-05172-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
|
19
|
Zhu L, Zhong L, Wang J, Tang Y, Liu Z. An Antifouling Photoelectrochemical Ultramicrosensor for Unbiased
Single‐Cell
Analysis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Linlin Zhu
- College of Chemistry and Chemical Engineering Hubei University Wuhan Hubei 430062 China
| | - Lin Zhong
- College of Chemistry and Chemical Engineering Hubei University Wuhan Hubei 430062 China
| | - Juan Wang
- College of Chemistry and Chemical Engineering Hubei University Wuhan Hubei 430062 China
| | - Ying Tang
- College of Chemistry and Molecular Science Wuhan University Wuhan Hubei 430072 China
| | - Zhihong Liu
- College of Chemistry and Molecular Science Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
20
|
Developed ratiometric fluorescent probe as a logic platform for potential diagnosis of thyroid disease and diabetes and fluorescent ink. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Yang W, Xie M, Zhang X, Sun X, Zhou C, Chang Y, Zhang H, Duan X. Multifunctional Soft Robotic Finger Based on a Nanoscale Flexible Temperature-Pressure Tactile Sensor for Material Recognition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55756-55765. [PMID: 34780161 DOI: 10.1021/acsami.1c17923] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Robotic hands with tactile perception can perform more advanced and safer operations, such as material recognition. Nanowires with high sensitivity, fast response, and low power consumption are suitable for multifunctional flexible tactile sensors to provide the tactile perception of robotic hands. In this work, we designed a multifunctional soft robotic finger with a built-in nanoscale temperature-pressure tactile sensor for material recognition. The flexible multifunctional tactile sensor integrates a nanowire-based temperature sensor and a conductive sponge pressure sensor to measure the temperature change rate and contact pressure simultaneously. The developed nanoscale temperature and conductive sponge pressure sensor can reach a high sensitivity of 1.196%/°C and 13.29%/kPa, respectively. With this multifunctional tactile sensor, the soft finger can quickly recognize four metals within three contact pressure ranges and 13 materials within a high contact pressure range. By combining tactile information and artificial neural networks, the soft finger can recognize the materials precisely with a high recognition accuracy of 92.7 and 95.9%, respectively. This work proves the application potential of the multifunctional soft robot finger in material recognition.
Collapse
Affiliation(s)
- Wentuo Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Mengying Xie
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoshuang Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xueyou Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Cheng Zhou
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Hainan Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Hu X, Hu R, Wu X, Songsun F, Zhu H, Chen J, Chen H. Self-Assembled Fabrication of Water-Soluble Porphyrin Mediated Supramolecule-Gold Nanoparticle Networks and Their Application in Selective Sensing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Ruhui Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xueqin Wu
- Technology Center of China Tobacco Henan Industrial, Anyang 455000, P. R. China
| | - Fengda Songsun
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Han Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jie Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
23
|
Li J, Wang S, Zhuang Z, Liu Z, Guo Z, Huang X. In-situ synthesis of Cu/Cu2+1O/carbon spheres for the electrochemical sensing of glucose in serum. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Wang N, Wang D, Pan R, Wang D, Jiang D, Chen HY. Self-Referenced Nanopipette for Electrochemical Analysis of Hydrogen Peroxide in the Nucleus of a Single Living Cell. Anal Chem 2021; 93:10744-10749. [PMID: 34314583 DOI: 10.1021/acs.analchem.0c05025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In a typical intracellular electroanalytical measurement, a nanoelectrode is located inside a living cell and a reference electrode outside the cell. This setup faces a problem to drop a certain potential across the cellular plasma membrane that might interrupt the cellular activity. To solve this problem, a self-referenced nanopipette is assembled by incorporating a reference electrode inside the nanocapillary, with a Pt ring at the tip as the electrochemical surface. The potential applied between the Pt ring and the reference electrode is restricted inside the capillary and thus has a negligible effect on the surrounding cellular environment. Using this new setup, the nanopipette pierces into the nucleus of a single living cell for the measurement of hydrogen peroxide under oxidative stress. It is found that a lesser amount of hydrogen peroxide is measured in the nucleus compared with the cytoplasm, revealing uneven oxidative stress inside the cell. The result will not only greatly improve the current setup for intracellular electrochemical analysis but also provide biological information of the compartment inside the living cell.
Collapse
Affiliation(s)
- Nina Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Dongni Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Rongrong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100190, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| |
Collapse
|
25
|
Madden J, Barrett C, Laffir FR, Thompson M, Galvin P, O’ Riordan A. On-Chip Glucose Detection Based on Glucose Oxidase Immobilized on a Platinum-Modified, Gold Microband Electrode. BIOSENSORS-BASEL 2021; 11:bios11080249. [PMID: 34436051 PMCID: PMC8392376 DOI: 10.3390/bios11080249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
We report the microfabrication and characterization of gold microband electrodes on silicon using standard microfabrication methods, i.e., lithography and etching techniques. A two-step electrodeposition process was carried out using the on-chip platinum reference and gold counter electrodes, thus incorporating glucose oxidase onto a platinum-modified, gold microband electrode with an o-phenylenediamine and ß-cyclodextrin mixture. The as-fabricated electrodes were studied using optical microscopy, scanning electron microscopy, and atomic force microscopy. The two-step electrodeposition process was conducted in low sample volumes (50 µL) of both solutions required for biosensor construction. Cyclic voltammetry and electrochemical impedance spectroscopy were utilised for electrochemical characterization at each stage of the deposition process. The enzymatic-based microband biosensor demonstrated a linear response to glucose from 2.5-15 mM, using both linear sweep voltammetry and chronoamperometric measurements in buffer-based solutions. The biosensor performance was examined in 30 µL volumes of fetal bovine serum. Whilst a reduction in the sensor sensitivity was evident within 100% serum samples (compared to buffer media), the sensor demonstrated linear glucose detection with increasing glucose concentrations (5-17 mM).
Collapse
Affiliation(s)
- Julia Madden
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (C.B.); (M.T.); (P.G.)
- Correspondence: (J.M.); (A.O.R.)
| | - Colm Barrett
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (C.B.); (M.T.); (P.G.)
| | - Fathima R. Laffir
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Michael Thompson
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (C.B.); (M.T.); (P.G.)
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Paul Galvin
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (C.B.); (M.T.); (P.G.)
| | - Alan O’ Riordan
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (C.B.); (M.T.); (P.G.)
- Correspondence: (J.M.); (A.O.R.)
| |
Collapse
|
26
|
Yang XK, Zhang FL, Wu WT, Tang Y, Yan J, Liu YL, Amatore C, Huang WH. Quantitative Nano-amperometric Measurement of Intravesicular Glutamate Content and its Sub-Quantal Release by Living Neurons. Angew Chem Int Ed Engl 2021; 60:15803-15808. [PMID: 33929780 DOI: 10.1002/anie.202100882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/10/2022]
Abstract
Quantitative measurements of intravesicular glutamate (Glu) and of transient exocytotic release contents directly from individual living neurons are highly desired for understanding the mechanisms (full or sub-quantal release?) of synaptic transmission and plasticity. However, this could not be achieved so far due to the lack of adequate experimental strategies relying on selective and sensitive Glu nanosensors. Herein, we introduce a novel electrochemical Glu nanobiosensor based on a single SiC nanowire that can selectively measure in real-time Glu fluxes released via exocytosis by large Glu vesicles (ca. 125 nm diameter) present in single hippocampal axonal varicosities as well as their intravesicular content before exocytosis. These measurements revealed a sub-quantal release mode in living hippocampal neurons, viz., only ca. one third to one half of intravesicular Glu molecules are released by individual vesicles during exocytotic events. Importantly, this fraction remained practically the same when hippocampal neurons were pretreated with L-Glu-precursor L-glutamine, while it significantly increased after zinc treatment, although in both cases the intravesicular contents were drastically affected.
Collapse
Affiliation(s)
- Xiao-Ke Yang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fu-Li Zhang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yun Tang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Yan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- PASTEUR, Départment de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, UPMC Univ. Paris 06, CNRS, 24 rue Lhomond, 75005, Paris, France
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
27
|
Yang C, Jing J, Liu Y, Gao M, Zhao H, Gao N, Zhang X. Polydopamine nanodots-based cost-effective nanoprobe for glucose detection and intracellular imaging. Anal Bioanal Chem 2021; 413:4865-4872. [PMID: 34169349 DOI: 10.1007/s00216-021-03447-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023]
Abstract
The cellular glucose detection remains a vital topic, which could provide some essential information about the glucose-based pathological and physiological processes. In this study, a smart polydopamine nanodots-based cost-effective fluorescence turn-on nanoprobe (denoted as PDA-Ag-GOx) for intracellular glucose detection is established. Silver nanoparticles (AgNPs) are directly formed in one step by the reduction of fluorescent polydopamine nanodots (PDADs) which have much phenolic hydroxyls on the surface. The fluorescence of PDADs could be quenched by AgNPs through surface plasmon-enhanced energy transfer (SPEET) from donor PDADs to acceptor AgNPs. Glucose oxidase (GOx) is modified on the PDA-Ag NPs by covalent bond. In the presence of glucose, GOx could catalyze glucose to produce H2O2 and gluconic acid. The generated acid and H2O2 would degrade AgNPs into Ag+, the PDADs release and restore its fluorescence. The proposed nanoprobe has some advantages, such as cost-effective, easy preparation, and excellent selectivity toward glucose, which could be successfully utilized to intracellular glucose imaging.
Collapse
Affiliation(s)
- Chunlei Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yazhou Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Mengxu Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Hengzhi Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Na Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
28
|
Yang X, Zhang F, Wu W, Tang Y, Yan J, Liu Y, Amatore C, Huang W. Quantitative Nano‐amperometric Measurement of Intravesicular Glutamate Content and its Sub‐Quantal Release by Living Neurons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Ke Yang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Fu‐Li Zhang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wen‐Tao Wu
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yun Tang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Jing Yan
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan‐Ling Liu
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- PASTEUR, Départment de Chimie École Normale Supérieure PSL Research University Sorbonne University UPMC Univ. Paris 06 CNRS 24 rue Lhomond 75005 Paris France
| | - Wei‐Hua Huang
- Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
29
|
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Tho D. K. Nguyen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Stefania Rabasco
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Pieter E. Oomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
- ParaMedir B.V., 1e Energieweg 13, 9301 LK Roden, The Netherlands
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
30
|
Wu H, Shi C, Zhu Q, Li Y, Xu Z, Wei C, Chen D, Huang X. Capillary-driven blood separation and in-situ electrochemical detection based on 3D conductive gradient hollow fiber membrane. Biosens Bioelectron 2021; 171:112722. [DOI: 10.1016/j.bios.2020.112722] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022]
|
31
|
Ruan YF, Wang HY, Shi XM, Xu YT, Yu XD, Zhao WW, Chen HY, Xu JJ. Target-Triggered Assembly in a Nanopipette for Electrochemical Single-Cell Analysis. Anal Chem 2020; 93:1200-1208. [PMID: 33301293 DOI: 10.1021/acs.analchem.0c04628] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Engineered nanopipette tools have recently emerged as a powerful approach for electrochemical nanosensing, which has major implications in both fundamental biological research and biomedical applications. Herein, we describe a generic method of target-triggered assembly of aptamers in a nanopipette for nanosensing, which is exemplified by sensitive and rapid electrochemical single-cell analysis of adenosine triphosphate (ATP), a ubiquitous energy source in life and important signaling molecules in many physiological processes. Specifically, a layer of thiolated aptamers is immobilized onto a Au-coated interior wall of a nanopipette tip. With backfilled pairing aptamers, the engineered nanopipette is then used for probing intracellular ATP via the ATP-dependent linkage of the split aptamers. Due to the higher surface charge density from the aptamer assembly, the nanosensor would exhibit an enhanced rectification signal. Besides, this ATP-responsive nanopipette tool possesses excellent selectivity and stability as well as high recyclability. This work provides a practical single-cell nanosensor capable of intracellular ATP analysis. More generally, integrated with other split recognition elements, the proposed mechanism could serve as a viable basis for addressing many other important biological species.
Collapse
Affiliation(s)
- Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
32
|
Chang S, Lee GJ, Song YM. Recent Advances in Vertically Aligned Nanowires for Photonics Applications. MICROMACHINES 2020; 11:mi11080726. [PMID: 32722655 PMCID: PMC7465648 DOI: 10.3390/mi11080726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
Over the past few decades, nanowires have arisen as a centerpiece in various fields of application from electronics to photonics, and, recently, even in bio-devices. Vertically aligned nanowires are a particularly decent example of commercially manufacturable nanostructures with regard to its packing fraction and matured fabrication techniques, which is promising for mass-production and low fabrication cost. Here, we track recent advances in vertically aligned nanowires focused in the area of photonics applications. Begin with the core optical properties in nanowires, this review mainly highlights the photonics applications such as light-emitting diodes, lasers, spectral filters, structural coloration and artificial retina using vertically aligned nanowires with the essential fabrication methods based on top-down and bottom-up approaches. Finally, the remaining challenges will be briefly discussed to provide future directions.
Collapse
|
33
|
Wu S, Tan Q, Forsberg E, Hu S, He S. In-situ dual-channel surface plasmon resonance fiber sensor for temperature-compensated detection of glucose concentration. OPTICS EXPRESS 2020; 28:21046-21061. [PMID: 32680152 DOI: 10.1364/oe.395524] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
External temperature variations inevitably affect the accuracy of surface plasmon resonance (SPR) biosensors. To that end, we propose an ultra-compact label-free dual-channel SPR fiber sensor (DSPRFS) that can simultaneously measure the glucose concentration and ambient temperature in real-time. The proposed sensor is based on a unique dual-channel structure fabricated by etching a side-hole fiber (SHF), and has significantly higher spatial sensitivity than traditional SPR biosensors. After coating with silver and zinc oxide films, one channel was filled with polydimethylsiloxane (PDMS) to sense the ambient temperature, and the other channel was immobilized with glucose oxidase (GOx) enzyme for glucose sensing. The proposed sensor is analyzed theoretically, fabricated and characterized. Glucose concentration sensitivity and temperature sensitivity of the manufactured sensor sample were found to be as high as 6.156 nm/mMand -1.604 nm/°C with limits of detection (LOD) of 16.24 µM and 0.06 °C, respectively. The proposed sensor has an extremely compact structure, enables temperature compensation, and is suitable for in-situ monitoring and high-precision sensing of glucose and other biological analytes.
Collapse
|
34
|
Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016-2020). Biosens Bioelectron 2020; 159:112165. [DOI: 10.1016/j.bios.2020.112165] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
|
35
|
Wei X, Lu Y, Zhang X, Chen ML, Wang JH. Recent advances in single-cell ultra-trace analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Lu Q, Wang J, Li B, Weng C, Li X, Yang W, Yan X, Hong J, Zhu W, Zhou X. Dual-Emission Reverse Change Ratio Photoluminescence Sensor Based on a Probe of Nitrogen-Doped Ti3C2 Quantum Dots@DAP to Detect H2O2 and Xanthine. Anal Chem 2020; 92:7770-7777. [DOI: 10.1021/acs.analchem.0c00895] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiaoyun Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Chenyuan Weng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyun Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoqiang Yan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
37
|
Gao X, Feng W, Xu Y, Jiang Y, Huang C, Yi Y, Guo A, Qiu X, Chen W. Nickel Catalysts Supported on Acetylene Black for High-Efficient Electrochemical Oxidation and Sensitive Detection of Glucose. NANOSCALE RESEARCH LETTERS 2020; 15:23. [PMID: 31993778 PMCID: PMC6987276 DOI: 10.1186/s11671-019-3218-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Electrocatalytic glucose oxidation is a very important reaction in glucose fuel cell and medical diagnosis, which is limited by sluggish reaction kinetics and low diffusion coefficient. Herein, a composite (donated as Ni6/AB) consisting of atomically precise nickel catalyst with defined crystal structure [Ni6(SC12H25)12] and acetylene black(AB) has been initiated as a novel and high-efficient non-noble metal catalyst for the electrochemical oxidation of glucose benefiting from its high exposure of active sites and increased electron/mass transport. The present Ni6/AB composites display the onset potential of +1.24 V and the maximum current density of 5 mA cm-2 at the potential of +1.47 V in the electrolyte of 0.1 M KOH with 5 mM glucose. This electrochemical performance is much superior to the alone nickel catalysts, acetylene black, and previous reported nanomaterials. Furthermore, the obtained Ni6/AB composites are also expected to find important application in the electrochemical detection of glucose due to its high electrochemical performance. The sensitivity and the detection of limit are determined to be 0.7709 mA cm-2 mM-1 and 1.9 μM, respectively. Our study demonstrates that atomically precise nickel catalysts on acetylene black could be potential promising materials for next-generation energy devices and electrochemical sensors.
Collapse
Affiliation(s)
- Xiaohui Gao
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083 Hunan China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan China
| | - Wenshuai Feng
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083 Hunan China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan China
| | - Yan Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan China
| | - Yifan Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan China
| | - Cong Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan China
| | - Yougen Yi
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083 Hunan China
| | - Aimin Guo
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083 Hunan China
| | - Xiaoqing Qiu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083 Hunan China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 Hunan China
| | - Wei Chen
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha, 410083 Hunan China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230029 Anhui China
| |
Collapse
|
38
|
Liu W, Sun J, Xu L, Zhu S, Zhou X, Yang S, Dong B, Bai X, Lu G, Song H. Understanding the noble metal modifying effect on In 2O 3 nanowires: highly sensitive and selective gas sensors for potential early screening of multiple diseases. NANOSCALE HORIZONS 2019; 4:1361-1371. [DOI: 10.1039/c9nh00404a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Sensor arrays consisting of In2O3 NWs loaded with different NMNPs can accurately distinguish different trace VOC biomarkers in simulated exhaled breath.
Collapse
|