1
|
Ali G, Tahira A, Hayat A, Bhatti MA, Shah AA, Uddin Shah Bukhari SN, Dawi E, Nafady A, Alshammari RH, Tonezzer M, Samoon MK, Ibupoto ZH. Facile and ecofriendly green synthesis of Co 3O 4/MgO-SiO 2 composites towards efficient asymmetric supercapacitor and oxygen evolution reaction applications. RSC Adv 2024; 14:38009-38021. [PMID: 39610823 PMCID: PMC11604033 DOI: 10.1039/d4ra07337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
The development of low-cost, eco-friendly, and earth-friendly electrode materials for energy storage and conversion applications is a highly desirable but challenging task for strengthening the existing renewable energy systems. As part of this study, orange peel extract was utilized to synthesize a magnesium oxide-silicon dioxide hybrid substrate system (MgO-SiO2) for coating cobalt oxide nanostructures (Co3O4) via hydrothermal methods. A variety of MgO-SiO2 compositions were used to produce Co3O4 nanostructures. The purpose of using MgO-SiO2 substrates was to increase the porosity of the final hybrid material and enhance its compatibility with the electrode material. This study investigated the morphology, chemical composition, optical properties, and functional group properties. In hybrid materials, the shape structure is inherited from nanoparticles with uniform size distributions that are well compacted. A relative decrease in the optical band was observed for Co3O4 when deposited onto an MgO-SiO2 substrate. An improvement in the electrochemical properties of Co3O4/MgO-SiO2 composites was observed during the measurements of supercapacitors and oxygen evolution reaction (OER) in alkaline solutions. The Co3O4/MgO-SiO2 composite prepared on 0.4 g of the MgO-SiO2 substrate (sample 2) demonstrated excellent specific capacitance, high energy density, and recycling stability for 40 000 galvanic charge-discharge cycles. The assembled asymmetric supercapacitor (ASC) device demonstrated a specific capacitance of 243.94 F g-1 at a current density of 2 A g-1. Co3O4/MgO-SiO2 composites were found to be highly active towards the OER in 1 M KOH aqueous solution with an overpotential of 340 mV at 10 mA cm-2 and a Tafel slope of 88 mV dc-1. It was found that the stability and durability were highly satisfactory. Based on the use of orange peel extract, a roadmap was developed for the synthesis of porous hybrid substrates for the development of efficient electrode materials for energy storage and conversion.
Collapse
Affiliation(s)
- Gulzar Ali
- Institute of Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | - Asma Hayat
- Institute of Chemistry, University of Sindh Jamshoro 76080 Pakistan
| | - Muhammad Ali Bhatti
- Centre for Environmental Sciences, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road Karachi 75270 Pakistan
| | - Syed Nizam Uddin Shah Bukhari
- Department of Basic Science and Humanities, Dawood University of Engineering and Technology Karachi Sindh 74800 Pakistan
| | - Elmuez Dawi
- College of Humanities and Sciences, Department of Mathematics and Sciences, Ajman University P. O. Box 346 Ajman UAE
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Riyadh H Alshammari
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Matteo Tonezzer
- Department of Chemical and Geological Sciences, University of Cagliari Monserrato Italy
| | - Muhammad Kashif Samoon
- Centre for Pure and Applied Geology, University of Sindh Jamshoro Jamshoro Sindh 76080 Pakistan
| | | |
Collapse
|
2
|
Shin CH, Lee HY, Gyan-Barimah C, Yu JH, Yu JS. Magnesium: properties and rich chemistry for new material synthesis and energy applications. Chem Soc Rev 2023; 52:2145-2192. [PMID: 36799134 DOI: 10.1039/d2cs00810f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Magnesium (Mg) has many unique properties suitable for applications in the fields of energy conversion and storage. These fields presently rely on noble metals for efficient performance. However, among other challenges, noble metals have low natural abundance, which undermines their sustainability. Mg has a high negative standard reduction potential and a unique crystal structure, and its low melting point at 650 °C makes it a good candidate to replace or supplement numerous other metals in various energy applications. These attractive features are particularly helpful for improving the properties and limits of materials in energy systems. However, knowledge of Mg and its practical uses is still limited, despite recent studies which have reported Mg's key roles in synthesizing new structures and modifying the chemical properties of materials. At present, information about Mg chemistry has been rather scattered without any organized report. The present review highlights the chemistry of Mg and its uses in energy applications such as electrocatalysis, photocatalysis, and secondary batteries, among others. Future perspectives on the development of Mg-based materials are further discussed to identify the challenges that need to be addressed.
Collapse
Affiliation(s)
- Cheol-Hwan Shin
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Ha-Young Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Caleb Gyan-Barimah
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Jeong-Hoon Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
3
|
Rajeswari B, Sravani B, Cheffena M, Janraj Naik R, Veera Manohara Reddy Y, Madhavi G, Suresh Reddy K, Jong Kim M. Ethylene glycol-assisted synthesis of reduced graphene oxide-supported bimetallic Pt-Co nanoparticles for the ultra-sensitive detection of tert-butyl hydroquinone. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Rabie EM, Shamroukh AA, Khodari M. A Novel Electrochemical Sensor Based on Modified Carbon Paste Electrode with ZnO Nanorods for the Voltammetric Determination of Indole‐3‐acetic Acid in Plant Seed Extracts. ELECTROANAL 2022. [DOI: 10.1002/elan.202100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- E. M. Rabie
- Chemistry Department Faculty of Science South Valley University 83523 Qena Egypt
| | - A. A. Shamroukh
- Chemistry Department Faculty of Science South Valley University 83523 Qena Egypt
| | - M. Khodari
- Chemistry Department Faculty of Science South Valley University 83523 Qena Egypt
| |
Collapse
|
5
|
Sravani B, Kiranmai S, Rajasekhara Reddy G, Park JP, VeeraManohara Reddy Y, Madhavi G. Highly sensitive detection of anti-cancer drug based on bimetallic reduced graphene oxide nanocomposite. CHEMOSPHERE 2022; 287:132281. [PMID: 34826940 DOI: 10.1016/j.chemosphere.2021.132281] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Herein, we describe a high-performance electrochemical sensor for the detection of regorafenib (REG) using bimetallic Pd-Ru nanoparticles anchored on pomegranate peel extract (PPE) derived reduced graphene oxide (Pd-Ru/rGO). PPE was employed to neutralize the extremely acidic graphene then cast-off along with the metal precursor for the duration of the chemical reduction to accomplish well dispersed Pd-Ru nanoparticles. Bimetallic Pd-Ru/rGO nanocomposites were synthesized using a facile chemical reduction method. Under optimal conditions, based on the differential pulse voltammetric studies it has been confirmed that the fabricated sensors has good electrocatalytic activity toward the detection of REG, spanning over the linear dynamic range of 0.5-300 nM. Moreover, the sensor exhibited a low limit of detection of 1.6 nM and a limit of quantification of 4.8 nM. The electrochemical sensor unveiled admirable selectivity and sensitivity, reproducibility, and repeatability. The fabricated sensor was suitable for real sample analysis (pharmaceutical tablet, human blood plasm, wastewater) with satisfactory recovery. The strategy presented herein can be employed in the development of electrochemical sensors for other target analytes.
Collapse
Affiliation(s)
- Bathinapatla Sravani
- Nanoelectrochemistry Lab, Department of Chemistry, Υogi Vemana University, Kadapa, 516005, India
| | - S Kiranmai
- Electrochemical Research Lab, Department of Chemistry, Sri Venkateswara University, Tirupati, 517502, India
| | | | - Jong Pil Park
- Department of Food Science and Technology, Chung - Ang University, 4726, Seodongdaero, Anesong, 17546, Republic of Korea.
| | - Y VeeraManohara Reddy
- Electrochemical Research Lab, Department of Chemistry, Sri Venkateswara University, Tirupati, 517502, India; Department of Food Science and Technology, Chung - Ang University, 4726, Seodongdaero, Anesong, 17546, Republic of Korea.
| | - G Madhavi
- Electrochemical Research Lab, Department of Chemistry, Sri Venkateswara University, Tirupati, 517502, India.
| |
Collapse
|
6
|
Chen J, Wang J, Ye R, Huang D, Chen S. An electrochemical sensor based on a glassy carbon electrode modified with sandwich structured ZIF-67@rGO for bisphenol A measurement. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5777-5786. [PMID: 34825246 DOI: 10.1039/d1ay01542g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The low conductivity of metal-organic frameworks seriously impedes their electrocatalytic performance. In this study, we prepared a fabricated sandwich structure composed of a Co-based zeolitic imidazolate framework (ZIF-67) and reduced graphene oxide (rGO) through a facile and simple one-pot hydrothermal reaction. This framework of nanocomposites, which are modified with a glassy carbon electrode, constructed a bisphenol A (BPA) electrochemical sensor for the first time. Operational parameters such as pH, electrolytes, the amount of modifiers, deposition potentials and deposition time were optimised for the sensitive detection of BPA. The performance of electrodes was evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction and transmission electron microscopy. With differential pulse voltammetry, the detection concentration of BPA ranged from 0.05 μmol L-1 to 100 μmol L-1. The results revealed that the hierarchical nanocomposites demonstrated better electrocatalytic performance with large electrochemically active surface areas, high sensitivity and a low limit of detection (5.2 nmol L-1), compared with a physical mixture of ZIF-67 and rGO at the same ratio. These impressive features originate from the synergistic effects of ZIF-67 and rGO. This study presents a new strategy using metal-organic framework composite materials for the sensitive detection of BPA.
Collapse
Affiliation(s)
- Jinyang Chen
- Fujian Polytechnic Normal University, Food Flexible Packaging Technology Fujian University Engineering Research Center, Fuqing, Fujian 350300, China.
- Fujian Normal University, Collge of Life sciences, Fuzhou 350117, Fujian, China
| | - Jiamei Wang
- Fujian Polytechnic Normal University, Food Flexible Packaging Technology Fujian University Engineering Research Center, Fuqing, Fujian 350300, China.
| | - Ruihong Ye
- Fujian Polytechnic Normal University, Food Flexible Packaging Technology Fujian University Engineering Research Center, Fuqing, Fujian 350300, China.
| | - Dihui Huang
- Fujian Polytechnic Normal University, Food Flexible Packaging Technology Fujian University Engineering Research Center, Fuqing, Fujian 350300, China.
| | - Sheng Chen
- Fujian Polytechnic Normal University, Food Flexible Packaging Technology Fujian University Engineering Research Center, Fuqing, Fujian 350300, China.
| |
Collapse
|
7
|
Xiang T, Wu Z, Sun Z, Cheng C, Wang W, Liu Z, Yang J, Li B. The synergistic effect of carbon edges and dopants towards efficient oxygen reduction reaction. J Colloid Interface Sci 2021; 610:486-494. [PMID: 34823848 DOI: 10.1016/j.jcis.2021.11.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
Decoration with alien atoms and increasing the edge content are two valid ways to activate the oxygen reduction reaction (ORR) property of nanocarbons. To further enhance their intrinsic activity and explore the underlying ORR mechanism, graphene nanoribbons (GNRs) were selected as an ideal catalyst model. Theoretical simulations have predicted that with the synergistic effect between heteroatom-doping and edge sites, the ORR activity can be significantly improved. Inspired by this, N-GNRs were synthesized via the oxidative unzipping of CNTs followed by nitrogen incorporation with urea. Ample edges and nitrogen doping sites were detected by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy, respectively. As a result, N-GNRs exhibited remarkably higher ORR properties in terms of onset and half-wave potentials, Tafel slopes, electron transfer number and methanol tolerance than either GNRs, the control sample without doping, or N-CNTs, the control sample without abundant edges, simply clarifying the significance of synergy between dopants and edges. Thus, this work provides a simple but efficient strategy to fabricate high-performance oxygen reduction catalysts.
Collapse
Affiliation(s)
- Tingting Xiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zirui Wu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongti Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chao Cheng
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenlong Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhenzhong Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bing Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Li G, Ren G, Wang WA, Hu Z. Rational design of N-doped CNTs@C 3N 4 network for dual-capture of biocatalysts in enzymatic glucose/O 2 biofuel cells. NANOSCALE 2021; 13:7774-7782. [PMID: 33871515 DOI: 10.1039/d1nr00407g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbonaceous materials are promising electrode materials for enzymatic biofuel cells (EBFCs) due to their excellent electrical conductivity, chemical and physical stability and biocompatibility. Design and preparation of carbon materials with a hollow structure and a rough surface are of great significance for immobilization of enzymes both inside and outside the carbon materials for EBFC applications. We report herein the synthesis of novel carbonaceous materials consisting of bamboo-shaped hollow N-doped carbon nanotubes (N-CNTs) and C3N4 nanosheets (denoted as N-CNTs@C3N4) as electrode materials for dual-capture of enzymes in glucose/O2 EBFCs. The combination of one-dimensional N-CNTs with an open structure and two-dimensional C3N4 nanosheets forms a three-dimensional crosslinking network that significantly enhances the immobilization of enzymes, electrode stability, and mass transfer of substrates, thus boosting the EBFC performance. As a result, EBFCs equipped with N-CNTs@C3N4 can generate a high open circuit potential of 0.93 V and output a maximum power density of 0.57 mW cm-2 at 0.47 V. Additionally, the as-fabricated glucose/O2 EBFCs are capable of directly harvesting energy from various soft drinks, which indicates the promising applications of the N-CNTs@C3N4 nanocomposite as an electrode material for EBFCs.
Collapse
Affiliation(s)
- Gangyong Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China and Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China.
| | - Guangming Ren
- Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Wei Alex Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China.
| |
Collapse
|
9
|
An ultra-sensitive rifampicin electrochemical sensor based on titanium nanoparticles (TiO2) anchored reduced graphene oxide modified glassy carbon electrode. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125533] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Dong Y, Liu J, Zheng J. A sensitive dopamine electrochemical sensor based on hollow zeolitic imidazolate framework. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Barathi P, Devaraj A, Subramania A. Mesoporous Carbon/α-Fe 2O 3 Nanoleaf Composites for Disposable Nitrite Sensors and Energy Storage Applications. ACS OMEGA 2020; 5:32160-32170. [PMID: 33376854 PMCID: PMC7758890 DOI: 10.1021/acsomega.0c02594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/05/2020] [Indexed: 05/24/2023]
Abstract
In this work, we report a novel hydrothermal synthesis of α-Fe2O3 nanoleaf-incorporated mesoporous carbon-chitosan (α-Fe2O3@MPC-chit) as a versatile disposable sensor for selective electrochemical detection of nitrite and for supercapacitor applications. The newly synthesized α-Fe2O3@MPC-chit nanocomposite was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, UV, and Raman spectroscopy. The extensive physicochemical characterization reveals the strong immobilization of α-Fe2O3 nanoleaves within the MPC-chit composite. The electrochemical characterization with cyclic voltammetry and impedance spectroscopy using [Fe(CN)6)]3-/4- as a redox probe concludes good electron conductivity and efficient electron transfer behavior of α-Fe2O3@MPC-chit. The α-Fe2O3@MPC-chit modified electrode exhibits excellent electrocatalytic activity toward nitrite oxidation. The amperometric method of nitrite detection showed a linear range of up to 200 μmol L-1 . The current sensitivity and detection limit were found to be 0.913 μA μM-1 and 31 nM cm-2, respectively. The improved catalytic activity of the proposed electrode was endorsed by the synergistic effect of α-Fe2O3 with the MPC-chit composite. The ability of the proposed electrode was demonstrated by the successful detection of nitrite present in tap water, river water, and industrial samples with extensive recovery values. Furthermore, the α-Fe2O3@MPC-chit modified stainless-steel electrode showed high-performance supercapacitor application and exhibited a large specific capacitance of 380 F g-1 at 1 A g-1.
Collapse
Affiliation(s)
- Palani Barathi
- Electrochemical
Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605014, India
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anthonisamy Devaraj
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Angaiah Subramania
- Electrochemical
Energy Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
12
|
Sajjad S, Wang C, Wang X, Ali T, Qian T, Yan C. In situ evolved NiMo/NiMoO 4 nanorods as a bifunctional catalyst for overall water splitting. NANOTECHNOLOGY 2020; 31:495404. [PMID: 32975226 DOI: 10.1088/1361-6528/abb393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to their good conductivity and catalytic performance, Ni-Mo-based catalysts are well-established for highly effective water splitting. However, the know-how required to fabricate distinct interfaces and electronic structures for metal oxides is still a challenge, and the synergistic effect between metal and metal oxides that enhances electrocatalytic activity is still ambiguous. As described here, by controlling the lithium-induced conversion reaction of metal oxides, metal/metal-oxide composites with plentiful interfaces and prominent electrical interconnections were fabricated, which can boost active sites and accelerate mass transfer during electrocatalytic reactions. As a consequence, the superior catalytic activity of ECT-NiMo/NiMoO4 exhibited a low overpotential of 61 mV at a current density of 10 mA cm-2 for the hydrogen evolution reaction and 331 mV at 100 mA cm-2 for the oxygen evolution reaction. When integrated into a two-electrode system, the ECT-NiMo/NiMoO4 revealed a highly stable and efficient performance in overall water splitting. This work provides a promising approach to enhance the metallicity and electron redistribution of catalysts for numerous water-splitting applications and many other possibilities for energy storage devices.
Collapse
Affiliation(s)
- Saman Sajjad
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Chao Wang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, People's Republic of China
| | - Tariq Ali
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Tao Qian
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| | - Chenglin Yan
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
13
|
Synthesis of a magnetic sorbent and its application in extraction of different pesticides from water, fruit, and vegetable samples prior to their determination by gas chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1635:461718. [PMID: 33229005 DOI: 10.1016/j.chroma.2020.461718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/20/2022]
Abstract
In this investigation, an efficient sorbent based on Fe3O4@polyphenols magnetic nanoparticles has been prepared using the extract of Mentha piperita leaves for the first time. The main purposes of this study were synthesis of economically affordable and environmentally friendly sorbent using the extract of Mentha piperita leaves and evaluating its application as a sorbent in magnetic solid phase extraction. The functional groups, magnetic property, size, and shape of the synthesized sorbent were characterized. The sorbent was utilized for the extraction and preconcentration of various pesticides (chlorpyrifos, fenazaquin, penconazole, diniconazole, oxadiazon, haloxyfop-methyl, hexaconazole, clodinafop-propargyl, tebuconazole, and fenoxaprop-p-ethyl) from vegetable, fruit, and water samples. After magnetic solid phase extraction, a dispersive liquid-liquid microextraction method was done to achieve low detection limits. The enriched pesticides were monitored by gas chromatography-tandem mass spectrometry. The synthesized sorbent was characterized by Fourier transform infrared, scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction, and vibrating sample magnetometer techniques, which confirmed the successful synthesis of the magnetic nanoparticles. The effective parameters such as the sorbent weight, ionic strength, pH, vortex time, and kind and volume of elution and extraction solvents were studied. Under optimum extraction conditions, the method showed broad linear ranges (0.05-1000 µg L-1) with low limits of detection (0.27-4.13 ng L-1) and quantification (0.91-13.8 ng L-1). Extraction recoveries and enrichment factors were in the ranges of 54-89 % and 491-811, respectively.
Collapse
|
14
|
Highly sensitive detection of dopamine based on hierarchical nanoporous NiCoO2/Ni composite. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Ibrahim M, Ibrahim H, Almandil NB, Sayed MA, Kawde A, Aldaqdouq Y. A Novel Platform Based on Au−CeO
2
@MWCNT Functionalized Glassy Carbon Microspheres for Voltammetric Sensing of Valrubicin as Bladder Anticancer Drug and its Interaction with DNA. ELECTROANAL 2020. [DOI: 10.1002/elan.202060125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohamed Ibrahim
- Department of Clinical Pharmacy Research Institute for Research and Medical Consultations Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Hossieny Ibrahim
- Chemistry Department Faculty of Science Assiut University Assiut Egypt
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research Institute for Research and Medical Consultations Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Marwa A. Sayed
- Department of Industrial Pharmacy Faculty of Pharmacy Assiut University Assiut 71526 Egypt
| | - Abdel‐Nasser Kawde
- Chemistry Department College of Sciences King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Yaqeen Aldaqdouq
- College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| |
Collapse
|
16
|
Xu S, Dai B, Zhao W, Jiang L, Huang H. Electrochemical detection of β-lactoglobulin based on a highly selective DNA aptamer and flower-like Au@BiVO 4 microspheres. Anal Chim Acta 2020; 1120:1-10. [PMID: 32475386 DOI: 10.1016/j.aca.2020.04.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022]
Abstract
Beta-lactoglobulin is a natural milk protein and the main cause of infant milk allergy. In this work, a sensitive, selective and inexpensive electrochemical biosensor for the detection of β-lactoglobulin was developed. In this sensor, a DNA aptamer was used instead of an expensive antibody as the recognition group highly selective for β-lactoglobulin. The flower-like BiVO4 microspheres were firstly found to have peroxidase mimic catalytic activity and used to amplify the electrochemical signal. The aptamer can bind β-lactoglobulin and fall off from the working electrode, after which the DNA2/Au/BiVO4 probe can be fixed to the DNA1/AuNPs/ITO working electrode by the hybridization of DNA2 with DNA1. Therefore, a higher concentration of β-lactoglobulin leads to increased fabrication of the DNA2/Au/BiVO4 probe on the surface of the working electrode, and thereby increases the electrochemical signal. This electrochemical biosensor exhibited a wide detection range from 0.01 to 1000 ng mL-1, with a limit of detection (LOD) of 0.007 ng mL-1, which indicates a good potential application in the field of food analysis.
Collapse
Affiliation(s)
- Shengpan Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, PR China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, PR China
| | - Benlin Dai
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, PR China
| | - Wei Zhao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, PR China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, 211800, PR China.
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, PR China.
| |
Collapse
|
17
|
Gogoi A, Anki Reddy K, Mondal PK. Influence of the presence of cations on the water and salt dynamics inside layered graphene oxide (GO) membranes. NANOSCALE 2020; 12:7273-7283. [PMID: 32196024 DOI: 10.1039/c9nr09288a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although over the past few years, graphene oxide (GO) has emerged as a promising membrane material, the applicability of layered GO membranes in water purification/seawater desalination is still a challenging issue because of the undesirable swelling of GO laminates in the aqueous environment. One of the ways to tune the interlayer spacing and to arrest the undesirable swelling of layered GO membranes in the aqueous environment is to intercalate the interlayer spacing of the GO laminates with cations. Although the cation intercalation imparts stabilization to GO laminates in the aqueous environment, their effect on the performance of the membrane is yet to be addressed in detail. In the present study we have investigated the effect of cation intercalation on the performance of layered GO membranes using molecular dynamics simulation. For the same interlayer spacing, the cation intercalated layered GO membranes have a higher water flux as compared to the corresponding pristine layered GO membranes. In the presence of the cations, the water molecules inside the interlayer gallery get more compactly packed. The presence of the cations also increases the stability of the hydrogen bond network among the water molecules inside the membrane. This can be attributed to slow water reorientation dynamics inside the interlayer gallery in the presence of the cations. The synergistic effect of all these changes is that the water permeability through the cation intercalated layered GO membranes is higher as compared to that through the corresponding pristine layered GO membranes. On the other hand, the intercalation of the cations (K+, Mg2+) leads to higher rejection of Na+ ions whereas the rejection of Cl- ions slightly decreases.
Collapse
Affiliation(s)
- Abhijit Gogoi
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam, India
| | | | | |
Collapse
|
18
|
Qi H, Song J, Fu Y, Wu X, Qi H. Highly dispersive Pt-Pd nanoparticles on graphene oxide sheathed carbon fiber microelectrodes for electrochemical detection of H 2O 2 released from living cells. NANOTECHNOLOGY 2020; 31:135503. [PMID: 31825903 DOI: 10.1088/1361-6528/ab60ce] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a facile strategy for the synthesis of surfactant-free, small and highly dispersive Pt-Pd nanoparticles on graphene oxide (Pt-Pd NPs/GO) by an electroless deposition method, which is sheathed on carbon fiber microelectrodes (CFMs) as an electrochemical sensing platform for highly sensitive and selective detection of hydrogen peroxide (H2O2) released from the living cells. GO serves as the reducing agent and stabilizer for electroless deposition of Pd NPs on the surface of GO owing to its low work function (4.38 eV) and highly conjugated electronic structure. The obtained Pd NPs/GO have a relatively high work function (4.64 eV), and thereby could be used as stabilizer for synthesis of surfactant-free, small and highly dispersive Pt-Pd NPs/GO by chemical reduction of K2PtCl4. The obtained Pt-Pd NPs have a uniform size of 4.0 ± 0.6 nm on the surface of GO. Moreover, the Pt-Pd NPs/GO sheathed CFMs exhibit an excellent electrocatalytic activity for the reduction of H2O2 with a low detection limit of 0.3 μM and good selectivity. These good properties enable the modified microelectrode to detect the H2O2 released from living cells.
Collapse
Affiliation(s)
- Hetong Qi
- Institute of Analytical Science, Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Koçak ÇC, Koçak S. Enhanced Electrochemical Determination of Catechol and Hydroquinone Based on Pd Nanoparticles/Poly(Taurine) Modified Glassy Carbon Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Süleyman Koçak
- Department of Chemistry, Science and Art FacultyManisa Celal Bayar University Manisa 45040 Turkey
| |
Collapse
|