1
|
Zhou P, Gu J, Fan L, Ma J, Lian H, Shi W, Wei B. All-printed organic photodetectors with metal electrodes enabled by one-step solvent-mediated transfer printing technology. NANOSCALE 2024; 16:10682-10689. [PMID: 38687297 DOI: 10.1039/d3nr06516b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A one-step solvent-mediated transfer printing technology (sTPT) is proposed to fabricate printable silver (Ag) electrodes. This simple approach can realize the residuals in the active layer serving as the mediator due to the capillary action without the use of any additional solvent. The as-cast polydimethylsiloxane (PDMS) was used as the stamp in the fabrication process. The residual solvent and the as-cast PDMS stamps simplified the fabrication process, while the transfer-printed Ag electrodes presented favorable conductivity and improved hydrophobicity due to the presence of residual PDMS on the surface of Ag, indicating the superiority as the top electrode for organic photodetectors (OPDs). Compared to the devices with the top Ag electrodes fabricated by the conventional evaporation method, we demonstrated that the OPDs with transfer-printed Ag electrodes presented better performance than that of the reference devices, including suppressed dark current, enlarged linear dynamic range, shortened response time, and optimized durability. These improved performances can be attributed to the fewer traps at the interface between the active layer and Ag electrodes. The sTPT may be a promising method for the fabrication of OPDs owing to the simplified fabrication process and enhanced device performance.
Collapse
Affiliation(s)
- Pengchao Zhou
- Affiliated Hospital of Jining Medical University, Jining, Shandong 273500, P. R. China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P. R. China.
| | - Jialu Gu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P. R. China.
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, P. R. China
| | - Lei Fan
- Affiliated Hospital of Jining Medical University, Jining, Shandong 273500, P. R. China
| | - Jipeng Ma
- Affiliated Hospital of Jining Medical University, Jining, Shandong 273500, P. R. China
| | - Hong Lian
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P. R. China.
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, P. R. China
| | - Wei Shi
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P. R. China.
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, P. R. China
| | - Bin Wei
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, P. R. China.
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, P. R. China
| |
Collapse
|
2
|
Liu Q, Li L, Wu J, Wang Y, Yuan L, Jiang Z, Xiao J, Gu D, Li W, Tai H, Jiang Y. Organic photodiodes with bias-switchable photomultiplication and photovoltaic modes. Nat Commun 2023; 14:6935. [PMID: 37907460 PMCID: PMC10618528 DOI: 10.1038/s41467-023-42742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
The limited sensitivity of photovoltaic-type photodiodes makes it indispensable to use pre-amplifier circuits for effectively extracting electrical signals, especially when detecting dim light. Additionally, the photomultiplication photodiodes with light amplification function suffer from potential damages caused by high power consumption under strong light. In this work, by adopting the synergy strategy of thermal-induced interfacial structural traps and blocking layers, we develop a dual-mode visible-near infrared organic photodiode with bias-switchable photomultiplication and photovoltaic operating modes, exhibiting high specific detectivity (~1012 Jones) and fast response speed (0.05/3.03 ms for photomultiplication-mode; 8.64/11.14 μs for photovoltaic-mode). The device also delivers disparate external quantum efficiency in two optional operating modes, showing potential in simultaneously detecting dim and strong light ranging from ~10-9 to 10-1 W cm-2. The general strategy and working mechanism are validated in different organic layers. This work offers an attractive option to develop bias-switchable multi-mode organic photodetectors for various application scenarios.
Collapse
Affiliation(s)
- Qingxia Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Lingfeng Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Jiaao Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Liu Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Zhi Jiang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianhua Xiao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Deen Gu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Weizhi Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China
| |
Collapse
|
3
|
Kim J, Joo CW, Hassan SZ, Yu SH, Kang M, Pi JE, Kang SY, Park YS, Chung DS. Synergetic contribution of fluorinated azide for high EQE and operational stability of top-illuminated, semitransparent, photomultiplication-type organic photodiodes. MATERIALS HORIZONS 2021; 8:3141-3148. [PMID: 34570854 DOI: 10.1039/d1mh01368h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, it is shown that fluorinated azide, employed as a functional additive to photomultiplication-type organic photodiodes (PM-OPDs), can not only enhance the operational stability by freezing the morphology consisting of matrix polymer/localized acceptor but also stabilize the trapped electron states such that the photomultiplication mechanism can be accelerated further, leading to exceptionally high external quantum efficiency (EQE). The consequent semitransparent OPD consisting of molybdenum oxide (MoO3)/Au/MoO3/photoactive layer/polyethyleneimine ethoxylated/indium tin oxide (ITO) rendered a maximum EQE of over 500 000% and 370 000% under bottom and top illumination, respectively. Owing to the remarkably high EQE, high specific detectivity of 5.6 × 1013 Jones and low noise-equivalent power of 5.35 × 10-15 W Hz-0.5 were also demonstrated. Furthermore, the OPD demonstrated stable performance during 20 h of continuous operation and minimal performance degradation even after the damp heat test. To fully visualize the advantages of the proposed high-EQE, top-illuminated, semitransparent OPD with spectral asymmetry between absorption and detection, a reflection-type fingerprint platform consisting of 1 OPD-1 oxide field-effect transistor complementary metal-oxide-semiconductor backplane (300 ppi) is designed and fabricated. The successful recognition of the fingerprint of one of the authors is demonstrated, which indicates the feasibility of the proposed PM-OPD for sensing weak light intensity.
Collapse
Affiliation(s)
- Juhee Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Chul Woong Joo
- Flexible Device Research Group, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Syed Zahid Hassan
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Seong Hoon Yu
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Mingyun Kang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Jae-Eun Pi
- Flexible Device Research Group, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
| | - Seung-Youl Kang
- Flexible Device Research Group, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
| | - Young-Sam Park
- Flexible Device Research Group, Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
4
|
Guo D, Yang L, Zhao J, Li J, He G, Yang D, Wang L, Vadim A, Ma D. Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1 000 000. MATERIALS HORIZONS 2021; 8:2293-2302. [PMID: 34846433 DOI: 10.1039/d1mh00776a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A visible-blind ultraviolet (UV) photodetector can detect UV signals and is not interfered with by visible light or infrared light in the environment. In order to realize high-performance visible-blind UV organic photodetectors (OPDs), we design photomultiplication-type (PM-type) OPDs by using a novel strategy. Firstly, wide bandgap organic semiconductor materials, which do not absorb visible light, are selected as donors to absorb UV light. Secondly, a very small amount of C60 is used as an acceptor to trap photogenerated electrons. These accumulating electrons near the Al electrode form a potential, which leads to band bending and narrowing of the interface barrier, thereby assisting hole-tunneling injection to form a multiplication. The fabricated visible-blind UV PM-type OPDs with donor/acceptor doping ratio of 50 : 1 exhibit a narrowband response with full-width at half-maximum (FWHM) of approximately 36 nm, an ultrahigh external quantum efficiency of 1.08 × 106% and a remarkable specific detectivity of 1.28 × 1014 jones at 335 nm wavelength under -14 V bias. The UV-to-visible rejection ratio exceeds 103 by adjusting the donor/acceptor mixing ratios. The devices made with other wide bandgap organic materials also showed similar performance, indicating that this device structure provides an effective method for the preparation of high-performance visible-blind UV PM-type OPDs. In addition, we prepared a flexible visible-blind UV PM-type OPD based on a PET substrate and integrated it with a flexible OLED to fabricate a wearable UV monitor, which can visually detect the intensity of UV light.
Collapse
Affiliation(s)
- Dechao Guo
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhao Z, Liu B, Xie C, Ma Y, Wang J, Liu M, Yang K, Xu Y, Zhang J, Li W, Shen L, Zhang F. Highly sensitive, sub-microsecond polymer photodetectors for blood oxygen saturation testing. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1008-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Kublitski J, Fischer A, Xing S, Baisinger L, Bittrich E, Spoltore D, Benduhn J, Vandewal K, Leo K. Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors. Nat Commun 2021; 12:4259. [PMID: 34267210 PMCID: PMC8282846 DOI: 10.1038/s41467-021-24500-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Detection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at -10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.
Collapse
Affiliation(s)
- Jonas Kublitski
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany.
| | - Axel Fischer
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Shen Xing
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Lukasz Baisinger
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Eva Bittrich
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Donato Spoltore
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany
| | - Koen Vandewal
- Instituut voor Materiaalonderzoek (IMO-IMOMEC), Hasselt University, Diepenbeek, Belgium
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Dresden, Germany.
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Liu Z, Chen Y, Hu Y, Dong J, Wen J, Gao J, Li P. Optimizing molecular alignment to reduce dark current via side-chain engineering for high-performance polymer photodetector. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Liu MY, Wang J, Yang KX, Liu M, Zhao ZJ, Zhang FJ. Broadband photomultiplication organic photodetectors. Phys Chem Chem Phys 2021; 23:2923-2929. [PMID: 33480933 DOI: 10.1039/d0cp05811d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broadband photomultiplication organic photodetectors (PMOPDs) can be achieved with a double-layered active layer prepared from IEICO-4F : PBDB-T blend solutions with different weight ratios (1 : 1 or 3 : 100, wt/wt). The response range of the double-layered PMOPDs covers from 310 nm to 930 nm, determined by the photon harvesting range of the IEICO-4F : PBDB-T (1 : 1, wt/wt) layer. The IEICO-4F : PBDB-T (3 : 100, wt/wt) layer was used as a PM layer in the double-layered PMOPDs, achieving external quantum efficiency (EQE) more than 100% based on the work mechanism of trap-assisted hole tunneling injection. The trapped electrons in PBDB-T/IEICO-4F/PBDB-T near the Al electrode will makeinterfacial-band-bending to narrow the injection barrier, resulting in hole-tunneling-injection from the external circuit. The polymer PBDB-T can provide an efficient charge transport channel for the injected hole from the external circuit. The specific detectivity (D*) and responsivity (R) of the double-layered PMOPDs are 1.05 ± 0.03 × 1012 Jones and 0.94 ± 0.03 A W-1 at 810 nm under a -10 V bias, respectively.
Collapse
Affiliation(s)
- Meng-Yao Liu
- School of Science, Beijing Jiaotong University, 100044, Beijing, China.
| | - Jian Wang
- College of Physics and Electronic Engineering, Taishan University, 271000, Taian, Shandong, China.
| | - Kai-Xuan Yang
- School of Science, Beijing Jiaotong University, 100044, Beijing, China.
| | - Ming Liu
- School of Science, Beijing Jiaotong University, 100044, Beijing, China.
| | - Zi-Jin Zhao
- School of Science, Beijing Jiaotong University, 100044, Beijing, China.
| | - Fu-Jun Zhang
- School of Science, Beijing Jiaotong University, 100044, Beijing, China.
| |
Collapse
|
9
|
Kornman CT, Li L, Weldeab AO, Ghiviriga I, Abboud KA, Castellano RK. Photoisomerization of dicyanorhodanine-functionalized thiophenes. Chem Sci 2020; 11:10190-10197. [PMID: 34094283 PMCID: PMC8162279 DOI: 10.1039/d0sc04409a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
π-Conjugated oligomers functionalized with the popular dicyanorhodanine (RCN) electron acceptor are shown to be susceptible to photo-induced Z/E isomerization. The stereochemistry of two model RCN-functionalized thiophenes is confirmed by single crystal X-ray analysis and 2D NMR, and shown to be the thermodynamically stable Z form. Relative energies, Z/E configurations, and conformational preferences are modelled using density functional theory (DFT). The photophysical properties of the model compounds are explored experimentally and computationally; the Z and E isomers display similar absorption profiles with significant spectral overlap and are inseparable upon irradiation to a photostationary state. The well-behaved photoisomerization process is routinely observable by thin-layer chromatography, UV-vis, and NMR, and the photochemical behavior of the two RCN-functionalized thiophenes is characterized under varying wavelengths of irradiation. Ultraviolet (254 nm) irradiation results in photostationary state compositions of 56/44 and 69/31 Z-isomer/E-isomer for substrates functionalized with one thiophene and two thiophenes, respectively. Ambient laboratory lighting results in excess of 10 percent E-isomer for each species in solution, an important consideration for processing such materials, particularly for organic photovoltaic applications. In addition, a photoswitching experiment is conducted to demonstrate the reversible nature of the photoreaction, where little evidence of fatigue is observed over numerous switching cycles. Overall, this work showcases an approach to characterize the stereochemistry and photochemical behavior of dicyanorhodanine-functionalized thiophenes, widely used components of functional molecules and materials.
Collapse
Affiliation(s)
- Cory T Kornman
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| | - Lei Li
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA .,Department of Materials Science and Engineering, Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University Clemson SC 29634 USA
| | - Asmerom O Weldeab
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| | - Khalil A Abboud
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| | - Ronald K Castellano
- Department of Chemistry, University of Florida PO Box 117200 Gainesville FL 32611 USA
| |
Collapse
|
10
|
Guo D, Xu Z, Yang D, Ma D, Tang B, Vadim A. Structure design and performance of photomultiplication-type organic photodetectors based on an aggregation-induced emission material. NANOSCALE 2020; 12:2648-2656. [PMID: 31939957 DOI: 10.1039/c9nr09386a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aggregation-induced emission (AIE) materials have shown attractive prospects in the fields of biological probes, chemical sensing, optoelectronic systems and stimuli responses. Here, we have successfully fabricated photomultiplication-type organic photodetectors based on an AIE material by designing a device structure. The high photoconductive gain was attributed to the interfacial trap-assisted hole-tunneling injection caused by MoO3 as the trap for electrons. The fabricated AIE-based photomultiplication-type organic photodetectors exhibited the figures of merits of high external quantum efficiency in excess of 60 000%, responsivity of 172 A W-1, detectivity of 3.08 × 1012 Jones, and photoresponse with a rise time of 1.69 ms. Moreover, the devices also showed good stability with a half-life of 700 hours at continuous testing under ambient conditions, which makes them one of the most stable OPDs reported so far. The results demonstrate that AIE molecules are an excellent kind of photodetective material.
Collapse
Affiliation(s)
- Dechao Guo
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Zeng Xu
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Dezhi Yang
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Dongge Ma
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Benzhong Tang
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China. and Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Agafonov Vadim
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| |
Collapse
|
11
|
Ren H, Chen J, Li Y, Tang J. Recent Progress in Organic Photodetectors and their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2002418. [PMID: 33437578 PMCID: PMC7788634 DOI: 10.1002/advs.202002418] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/08/2020] [Indexed: 05/19/2023]
Abstract
Organic photodetectors (OPDs) have attracted continuous attention due to their outstanding advantages, such as tunability of detecting wavelength, low-cost manufacturing, compatibility with lightweight and flexible devices, as well as ease of processing. Enormous efforts on performance improvement and application of OPDs have been devoted in the past decades. In this Review, recent advances in device architectures and operation mechanisms of phototransistor, photoconductor, and photodiode based OPDs are reviewed with a focus on the strategies aiming at performance improvement. The application of OPDs in spectrally selective detection, wearable devices, and integrated optoelectronics are also discussed. Furthermore, some future prospects on the research challenges and new opportunities of OPDs are covered.
Collapse
Affiliation(s)
- Hao Ren
- School of Physics and Electronics ScienceMinistry of Education Nanophotonics & Advanced Instrument Engineering Research CenterEast China Normal UniversityShanghai200062P. R. China
- Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Jing‐De Chen
- Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| | - Yan‐Qing Li
- School of Physics and Electronics ScienceMinistry of Education Nanophotonics & Advanced Instrument Engineering Research CenterEast China Normal UniversityShanghai200062P. R. China
| | - Jian‐Xin Tang
- Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123P. R. China
| |
Collapse
|