1
|
Yadav S, Baghel NS, Sarkar SK, Subramaniam C. Interplay of Size and Magnetic Effects in Electrocatalytic Water Oxidation Activity of Sub-10 nm NiO x Supported Porous Hard-Carbons. Chem Asian J 2024; 19:e202400631. [PMID: 39034282 DOI: 10.1002/asia.202400631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
This report describes a systematic approach for precise engineering of a catalyst-metal oxide interface through combining complementary approaches of chemical vapor deposition and atomic layer deposition. Specifically, Chemical Vapor Deposition (CVD) fabricated nanostructured hard-carbon framework (NCF) is employed as synergistic support for precise deposition of NiOx particles through Atomic Layer Deposition (ALD). The three variants of NCF-NiOx system (dimensions ranging from 3-12 nm, surface coverage ranging from 0.14 %-2 %) achieved exhibit unique electrocatalytic water oxidation activities, that are further strongly influenced by an external magnetic field (Hext). This confluence of size engineering and associated magnetic field effects interplay to produce the largest lowering in Rct at Hext=200 mT. A comprehensive analysis of electrocatalytic parameters including the Tafel slope and double layer capacitance establishes further insights on co-relation of size effect and magnetic properties to understand the role of nanocarbon supported transition metal oxides in water electrolysis.
Collapse
Affiliation(s)
- Subham Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| | - Niranjan S Baghel
- Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| | - Shaibal K Sarkar
- Department of Energy Science & Engineering, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| | - Chandramouli Subramaniam
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai Maharashtra, 400076, India
| |
Collapse
|
2
|
Chowdhury A, Thacharakkal D, Borah D, Shanmugam M, Subramaniam C. Exploiting the Synergism of a Carbon-Catalyst Interface to Achieve Magneto-Electrocatalytic Overall Water Splitting at 2.197 V. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45855-45867. [PMID: 37737638 DOI: 10.1021/acsami.3c08516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The desire to electrolyze water at low energy and high kinetics for achieving rapid H2 production forms the holy grail for the paradigm shift to a sustainable H2-driven economy. While alkaline electrolysis is preferred due to the use of earth-abundant catalysts, its sluggish kinetics and high overpotential are the persistent challenges. Addressing this, we demonstrate the coupling of an externally applied magnetic field (Hext) to a synergistically designed interface of nanostructured carbon floret with antiferromagnetic NiO nanoflakes that act in unison to achieve rapid hydrogen generation (6.3 N m3 h-1 W-1) that is comparable with existing technologies. Specifically, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials are simultaneously reduced by 10 and 7%, respectively, under the influence of a weak fridge magnet (Hext = 200 mT). Consequently, ∼11% improvement in the energy efficiency is observed with a 21% reduced cell voltage for overall water splitting. The stability of the system is demonstrated over a prolonged lifetime of ∼95 h. This performance enhancement with Hext for both HER and OER is explained in terms of improved kinetic facility for the reaction and lower resistance of charge transfer pathway. Moreover, the electrocatalyst is seen to retain the improved performance for prolonged usage (∼3 h) even after the removal of the Hext, and hence, it provides an energy-efficient hydrogen and oxygen generation pathway.
Collapse
Affiliation(s)
- Ananya Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Dipin Thacharakkal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Dipanti Borah
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Chandramouli Subramaniam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
3
|
Dwivedi I, Subramaniam C. Joule Heating-Driven Transformation of Hard-Carbons to Onion-like Carbon Monoliths for Efficient Capture of Volatile Organic Compounds. ACS MATERIALS AU 2021; 2:154-162. [PMID: 36855762 PMCID: PMC9888654 DOI: 10.1021/acsmaterialsau.1c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soft graphitizable carbon-based multifunctional nanomaterials have found versatile applications ranging from energy storage to quantum computing. In contrast, their hard-carbon analogues have been poorly investigated from both fundamental and application-oriented perspectives. The predominant challenges have been (a) the lack of approaches to fabricate porous hard-carbons and (b) their thermally nongraphitizable nature, leading to inaccessibility for several potential applications. In this direction, we present design principles for fabrication of porous hard-carbon-based nanostructured carbon florets (NCFs) with a highly accessible surface area (∼936 m2/g), rivalling their soft-carbon counterparts. Subjecting such thermally stable hard-carbons to a synergistic combination of an electric field and Joule heating drives their transformation to free-standing macroscopic monoliths composed of onion-like carbons (OLCMs). This represents the first such structural transformation observed in sp2-based hard-carbon NCFs to sp2-networked OLCMs. Micro-Raman spectroscopy establishes the simultaneous increase in the intensity of D-, 2D-, and D + G-bands at 1341, 2712, and 2936 cm-1 and is correlated to the reorganization in the disordered graphitic domains of NCFs to curved concentric nested spheres in OLCMs. This therefore completely precludes the formation of a nanodiamond core that has been consistently observed in all previously reported OLCs. The Joule heating-driven formation of OLCMs is accompanied by ∼5700% enhancement in electrical conductivity that is brought about by the fusion of outermost graphitic shells of OLCs to result in monolithic OLC structures (OLCMs). The porous and inter-networked OLCMs exhibit an excellent adsorption-based capture of volatile organic compounds such as toluene at high efficiencies (∼99%) over a concentration range (0.22-1.86 ppm) that is relevant for direct applications such as smoke filters in cigarettes.
Collapse
|
4
|
Roy KS, Subramaniam C, Panchakarla LS. Non-Stoichiometry Induced Exsolution of Metal Oxide Nanoparticles via Formation of Wavy Surfaces and their Enhanced Electrocatalytic Activity: Case of Misfit Calcium Cobalt Oxide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9897-9907. [PMID: 33591175 DOI: 10.1021/acsami.0c20891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most heterogeneous catalytic reactions demand high density and yet spatially separated nanoparticles that are strongly anchored on the oxide surfaces. Such nanoparticles can be deposited or synthesized in situ via nonstoichiometric methods. To date, nanoparticles have been exsolved from perovskite oxide surfaces using nonstoichiometric processes. However, the density of the space-separated nanoparticles on the oxide surfaces is still low. And less attention is paid toward the changes that happen to the host during the nanoparticle exsolution process. In this work, we demonstrated in situ exsolution of ultrafine nanoparticles (∼5 nm) of either Co3O4 or Ca(OH)2 via judicious control of nonstoichiometry in a misfit Ca3Co4O9 (CCO). The nanoparticle density over the CCO surface reached as high as 8500/μm2, which is significantly higher than previously reported values. High-resolution electron microscopy studies reveal the formation mechanism of Co3O4 nanoparticles over CCO, and the formation takes palace via the formation of wavy surfaces on the CCO. Defects caused by the nonstoichiometric synthesis created microstrain within the host CCO, resulting in making the new density of states near the Fermi energy. Further, the exsolution process turned the inert host (CCO) into electrocatalytically active toward water splitting. The nonstoichiometric samples obtained by shorter annealing times showed high electrocatalytic behavior for the hydrogen evolution (HER) and oxygen evolution (OER) reactions. The catalytic activity is further enhanced (reaching overpotential of 320 mV and 410 mV for HER and OER respectively, for a current density of 10 mA/cm2) by removing the surface nanoparticles. The observation indicates that the active sites that are produced during the nonstoichiometric synthesis also present in the bulk of the CCO (host). We believe that similar nonstoichiometric synthesis can be applied to a wide variety of tricomponent systems, and they could endow the hosts with novel properties for applications such as catalysis and thermoelectrics.
Collapse
Affiliation(s)
- Kankona Singha Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | - Leela S Panchakarla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
5
|
Chang J, Zang S, Wang Y, Chen C, Wu D, Xu F, Jiang K, Bai Z, Gao Z. Co3O4@Ni3S4 heterostructure composite constructed by low dimensional components as efficient battery electrode for hybrid supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136501] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Saha J, Verma S, Ball R, Subramaniam C, Murugavel R. Compositional Control as the Key for Achieving Highly Efficient OER Electrocatalysis with Cobalt Phosphates Decorated Nanocarbon Florets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903334. [PMID: 31523910 DOI: 10.1002/smll.201903334] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Compositional interplay of two different cobalt phosphates (Co(H2 PO4 )2 ; Co-DP and Co(PO3 )2 ; Co-MP) loaded on morphologically engineered high surface area nanocarbon leads to an increased electrocatalytic efficiency for oxygen evolution reaction (OER) in near neutral conditions. This is reflected as significant reduction in the onset overpotential (301 mV) and enhanced current density (30 mA cm-2 @ 577 mV). In order to achieve uniform surface loading, organic-soluble thermolabile cobalt-bis(di-tert-butylphosphate) is synthesized in situ inside the nanocarbon matrix and subsequently pyrolyzed at 150 °C to produce Co(H2 PO4 )2 /Co(PO3 )2 (80:20 wt%). Annealing this sample at 200 or 250 °C results in the redistribution of the two phosphate systems to 55:45 or 20:80 (wt%), respectively. Detailed electrochemical measurements clearly establish that the 55:45 (wt%) sample prepared at 200 °C performs the best as a catalyst, owing to a relay mechanism that enhances the kinetics of the 4e- transfer OER process, which is substantiated by micro-Raman spectroscopic studies. It is also unraveled that the engineered nanocarbon support simultaneously enhances the interfacial charge-transfer pathway, resulting in the reduction of onset overpotential, compared to earlier investigated cobalt phosphate systems.
Collapse
Affiliation(s)
- Jayeeta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sonam Verma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ranadeb Ball
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
7
|
Zhang L, Zhang T, Dai K, Zhao L, Wei Q, Zhang B, Xiang X. Ultrafine Co3O4 nanolayer-shelled CoWP nanowire array: a bifunctional electrocatalyst for overall water splitting. RSC Adv 2020; 10:29326-29335. [PMID: 35521139 PMCID: PMC9055948 DOI: 10.1039/d0ra05950a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
The development of bifunctional electrocatalysts based on highly efficient non-noble metals is pivotal for overall water splitting. Here, a composite electrode of Co3O4@CoWP is synthesized, where an ultrathin layer composed of Co3O4 nanoparticles is grown on CoWP nanowires supported on a carbon cloth (CC). The Co3O4@CoWP/CC electrode exhibits excellent electrocatalytic activity and improved kinetics towards both the oxygen and hydrogen evolution reactions (OER and HER). The Co3O4@CoWP/CC electrode achieves a current density of 10 mA cm−2 at a low overpotential of 269 mV for the OER and −10 mA cm−2 at 118 mV for the HER in 1.0 M KOH solution. The voltage applied to a two-electrode water electrolyzer for overall water splitting, while employing the Co3O4@CoWP/CC electrode as both an anode and a cathode, in order to reach a current density of 10 mA cm−2, is 1.61 V, which is better than that for the majority of reported non-noble electrocatalysts. Moreover, the Co3O4@CoWP/CC electrode exhibits good stability over 24 h with slight attenuation. The electrode benefits from the enhanced adsorption of oxygen intermediates on Co3O4 during the OER, the increased ability for water dissociation and the optimized H adsorption/desorption ability of CoWP nanowires during the HER. This study provides a feasible approach for cost-effective and high-performance non-noble metal bifunctional catalysts for overall water electrolysis. A hierarchical 3D self-supporting CoWP nanowire array shelled with an ultrathin Co3O4 nanolayer on carbon cloth (Co3O4@CoWP/CC) exhibits superior overall water electrolysis capability.![]()
Collapse
Affiliation(s)
- Lili Zhang
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
- State Key Laboratory of Chemical Resource Engineering
| | - Tingting Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Kaiqing Dai
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Liqing Zhao
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Qinghe Wei
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Bing Zhang
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| |
Collapse
|