1
|
Botha JL, van Heerden B, Krüger TPJ. Advanced analysis of single-molecule spectroscopic data. BIOPHYSICAL REPORTS 2024; 4:100173. [PMID: 39097230 PMCID: PMC11374972 DOI: 10.1016/j.bpr.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
We present Full SMS, a multipurpose graphical user interface (GUI)-based software package for analyzing single-molecule spectroscopy (SMS) data. SMS typically delivers multiparameter data-such as fluorescence brightness, lifetime, and spectra-of molecular- or nanometer-scale particles such as single dye molecules, quantum dots, or fluorescently labeled biological macromolecules. Full SMS allows an unbiased statistical analysis of fluorescence brightness through level resolution and clustering, analysis of fluorescence lifetimes through decay fitting, as well as the calculation of second-order correlation functions and the display of fluorescence spectra and raster-scan images. Additional features include extensive data filtering options, a custom HDF5-based file format, and flexible data export options. The software is open source and written in Python but GUI based so it may be used without any programming knowledge. A multiprocess architecture was employed for computational efficiency. The software is also designed to be easily extendable to include additional import data types and analysis capabilities.
Collapse
Affiliation(s)
- Joshua L Botha
- Department of Physics, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Bertus van Heerden
- Department of Physics, University of Pretoria, Pretoria, Gauteng, South Africa; Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa; National Institute of Theoretical and Computational Sciences (NITheCS), South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria, Gauteng, South Africa; Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa; National Institute of Theoretical and Computational Sciences (NITheCS), South Africa.
| |
Collapse
|
2
|
Assefa GT, Botha JL, van Heerden B, Kyeyune F, Krüger TPJ, Gwizdala M. ApcE plays an important role in light-induced excitation energy dissipation in the Synechocystis PCC6803 phycobilisomes. PHOTOSYNTHESIS RESEARCH 2024; 160:17-29. [PMID: 38407779 PMCID: PMC11006782 DOI: 10.1007/s11120-024-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.
Collapse
Affiliation(s)
- Gonfa Tesfaye Assefa
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Joshua L Botha
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Bertus van Heerden
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| | - Farooq Kyeyune
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Department of Physics, Faculty of Science, Kyambogo University, P.O. Box 1, Kyambogo, Kampala, Uganda
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain.
| |
Collapse
|
3
|
Yu J, Yan J, Jiang L, Li J, Guo H, Qiao M, Qu L. Fluorescence enhancement of organic dyes by femtosecond laser-induced cavitation bubbles for crystal imaging. NANOSCALE 2023; 15:8730-8739. [PMID: 37039123 DOI: 10.1039/d3nr00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fluorescence from organic dyes can be applied in many research fields such as imaging, bio-sensing and diagnosis. One shortcoming of fluorescence imaging is the limitation in emission intensity. Amplification of fluorescence signals can be achieved by the enhancement of localized electromagnetic fields. Metallic nanoparticles are widely applied to produce plasmon resonance, but they cause thermal damage to fragile bio-materials. In this study, we propose a method for nanoparticle-free fluorescence enhancement by ultrafast laser-induced cavitation bubbles in organic dye solutions. Fluorescence enhancement without the use of nanoparticles prevents potential hazards including thermal effects and biotoxicity. In order to achieve fluorescence enhancement in neat dye solution, cavitation bubbles were induced by focusing an 800 nm ultrafast laser beam. Another 400 nm laser beam was used to pump the gain medium. Fluorescence enhancement was observed in various dye solutions. The intensity and spectra of the fluorescence emission can be controlled by changing the power and focus of the excitation laser. According to time-resolved microscopy and simulation results, the cavity formed by the laser-induced bubbles results in the enhancement of the localized electromagnetic field and induces the amplification of the fluorescence signal. The bubble-enhanced fluorescence emission was used for imaging of protein crystals without causing thermal damage to the samples. This study provides an effective method for bio-compatible fluorescence enhancement and has application prospects in fields such as bio-imaging.
Collapse
Affiliation(s)
- Jiachen Yu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianfeng Yan
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lan Jiang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jiaqun Li
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Heng Guo
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ming Qiao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Liangti Qu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
van Heerden B, Vickers NA, Krüger TPJ, Andersson SB. Real-Time Feedback-Driven Single-Particle Tracking: A Survey and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107024. [PMID: 35758534 PMCID: PMC9308725 DOI: 10.1002/smll.202107024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/07/2022] [Indexed: 05/14/2023]
Abstract
Real-time feedback-driven single-particle tracking (RT-FD-SPT) is a class of techniques in the field of single-particle tracking that uses feedback control to keep a particle of interest in a detection volume. These methods provide high spatiotemporal resolution on particle dynamics and allow for concurrent spectroscopic measurements. This review article begins with a survey of existing techniques and of applications where RT-FD-SPT has played an important role. Each of the core components of RT-FD-SPT are systematically discussed in order to develop an understanding of the trade-offs that must be made in algorithm design and to create a clear picture of the important differences, advantages, and drawbacks of existing approaches. These components are feedback tracking and control, ranging from simple proportional-integral-derivative control to advanced nonlinear techniques, estimation to determine particle location from the measured data, including both online and offline algorithms, and techniques for calibrating and characterizing different RT-FD-SPT methods. Then a collection of metrics for RT-FD-SPT is introduced to help guide experimentalists in selecting a method for their particular application and to help reveal where there are gaps in the techniques that represent opportunities for further development. Finally, this review is concluded with a discussion on future perspectives in the field.
Collapse
Affiliation(s)
- Bertus van Heerden
- Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Nicholas A Vickers
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Sean B Andersson
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Systems Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
5
|
Paul N, Suresh L, Chen Y, Zhang Y, Alzakia FI, Vogt V, Jones MR, Wong ZJ, Tan SC. Plasmonic protein electricity generator. NANOSCALE HORIZONS 2022; 7:220-234. [PMID: 35043802 DOI: 10.1039/d1nh00569c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interest in acquiring green energy from sunlight is driving research into the incorporation of biological photosynthetic materials into biohybrid devices. A potential way to enhance solar energy conversion by photosynthetic proteins is to couple them to plasmonic nanomaterials to enhance absorption of incident radiation. In this work, a variety of plasmonic nanoparticles were used to boost the photocurrent output of a Protein Electricity Generator (PEG). Mixing gold nanoparticles (NPs) of five different architectures into the photoprotein/electrolyte contents of the cell was found to increase device performance, the most effective being ∼120 nm diameter star-shaped clusters that caused a ∼six-fold increase in photocurrent at the optimum dopant level. In addition, high-resolution electrohydrodynamic printing was used to create parallel line and square lattice patterns of silver nanoparticle ink on the tungsten rear electrode of the cells. Patterns with a 700 nm spacing between lines boosted photocurrents by up to three-fold and the effects of the gold and silver nanoparticles were additive, such that the ideal combination produced a ∼19-fold increase in photocurrent and device efficiency. We attribute the elevated performance to plasmonic enhancement of absorbance and scattering effects that increase the path length for photons in the device. Use of rear electrodes with silver nanoparticle lines and grids at 1100 nm spacing did not increase photocurrents, highlighting the importance of precision printing of nanostructures for the enhancement of device performance.
Collapse
Affiliation(s)
- Nikita Paul
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Lakshmi Suresh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Yixin Chen
- Department of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Building, College Station, TX 77843, USA.
| | - Yaoxin Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Fuad Indra Alzakia
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Victor Vogt
- Department of Materials Science and Engineering, Texas A&M University, 207 Reed McDonald Building, College Station, TX 77843, USA
| | - Michael R Jones
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | - Zi Jing Wong
- Department of Aerospace Engineering, Texas A&M University, 701 H.R. Bright Building, College Station, TX 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, 207 Reed McDonald Building, College Station, TX 77843, USA
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| |
Collapse
|
6
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Kim YJ, Hong H, Yun J, Kim SI, Jung HY, Ryu W. Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005919. [PMID: 33236450 DOI: 10.1002/adma.202005919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Harvesting solar energy in the form of electricity from the photosynthesis of plants, algal cells, and bacteria has been researched as the most environment-friendly renewable energy technology in the last decade. The primary challenge has been the engineering of electrochemical interfacing with photosynthetic apparatuses, organelles, or whole cells. However, with the aid of low-dimensional nanomaterials, there have been many advances, including enhanced photon absorption, increased generation of photosynthetic electrons (PEs), and more efficient transfer of PEs to electrodes. These advances have demonstrated the possibility for the technology to advance to a new level. In this article, the fundamentals of photosynthesis are introduced. How PE harvesting systems have improved concerning solar energy absorption, PE production, and PE collection by electrodes is discussed. The review focuses on how different kinds of nanomaterials are applied and function in interfacing with photosynthetic materials for enhanced PE harvesting. Finally, the review analyzes how the performance of PE harvesting and stand-alone systems have evolved so far and its future prospects.
Collapse
Affiliation(s)
- Yong Jae Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyeonaug Hong
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - JaeHyoung Yun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seon Il Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ho Yun Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - WonHyoung Ryu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
8
|
Ullah Khan N, Muhammad Z, Liu X, Lin J, Zheng Q, Zhang H, Malik S, He H, Shen L. Ultrasensitive Detection of Exosome Using Biofunctionalized Gold Nanorods on a Silver-Island Film. NANO LETTERS 2021; 21:5532-5539. [PMID: 34138564 DOI: 10.1021/acs.nanolett.1c00830] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exosomes are often a promising source of biomarkers for cancer diagnosis in the early stages. Therefore, it is important to develop a sensitive and low-cost detection method. Here, we introduce a new substrate using gold nanorods (GNRs) on a silver-island film that produces a 360-fold AF647 molecule fluorescence enhancement compared to glass. The amplified fluorescence was proven theoretically by using finite difference time-domain simulation (FDTD). Utilizing the enhanced fluorescence from the substrate, GNRs attached with the biomolecules and created a sandwich immunoassay that can significantly detect human CD63 antigen on the exosome. By applying the method, the detection limit of mouse IgG goes down to 0.3 ng/mL, which is considerably better than the existing methods. Moreover, the sensitivity and accuracy for clinical plasma from six patients confirm its diagnostic feasibility. The proposed substrate can be uniformly extended to the identification of other biomarkers by modifying the antibodies on the surfaces of the GNRs.
Collapse
Affiliation(s)
- Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, China
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Zahir Muhammad
- College of Physics Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen 518060, Guangdong, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Samiullah Malik
- School of basic medicine and health care center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, Guangdong, China
| |
Collapse
|
9
|
Carnio EG, Buchleitner A, Schlawin F. Optimization of selective two-photon absorption in cavity polaritons. J Chem Phys 2021; 154:214114. [PMID: 34240974 DOI: 10.1063/5.0049863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate optimal states of photon pairs to excite a target transition in a multilevel quantum system. With the help of coherent control theory for two-photon absorption with quantum light, we infer the maximal population achievable by optimal entangled vs separable states of light. Interference between excitation pathways as well as the presence of nearby states may hamper the selective excitation of a particular target state, but we show that quantum correlations can help to overcome this problem and enhance the achievable "selectivity" between two energy levels, i.e., the relative difference in population transferred into each of them. We find that the added value of optimal entangled states of light increases with broadening linewidths of the target states.
Collapse
Affiliation(s)
- Edoardo G Carnio
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Frank Schlawin
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| |
Collapse
|
10
|
Sohrabi F, Asadishad T, Ghazimoradi MH, Mahinroosta T, Saeidifard S, Hamidi SM, Farivar S. Plasmophore Enhancement in Fibroblast Green Fluorescent Protein-Positive Cells Excited by Smoke. ACS OMEGA 2020; 5:12278-12289. [PMID: 32548411 PMCID: PMC7271360 DOI: 10.1021/acsomega.0c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/24/2020] [Indexed: 05/08/2023]
Abstract
Considering the large consumption of nicotine and its sedative/stimulant effect on different organs of the body, the detection of low concentration of this material and its subsequent effect on live animals plays a significant role. Optical detection techniques such as plasmonics are the pioneers in highly sensitive detection techniques. However, for investigating the nicotine/smoke effect on live cells, not only the interaction between cell nicotine should be optimized but also the plasmonic interface should show a high sensitivity to the reception of nicotine by the cell receptors. In this study, the sensitivity of the plasmonic detection system was greatly increased using the coupling of plasmon and fluorophore. This coupling could enhance the main plasmonic signal several orders of magnitude besides improving Δ and Ψ ellipsometry parameters. Benefiting from the green fluorescence proteins, the phase shift and the amplitude ratio between the reflections under s- and p-polarized light enhance considerably which verifies the coupling of the dipole of the fluorescence emitter and the plasmons of the metal nanostructure. For 1 s increase of the maintenance time, we encountered a considerable increase in the Δ values that were 0.15° for T e = 1 s and 0.24° for T e = 3 s. Benefiting from extracted ellipsometry parameters, this study could open new avenues toward studying the effect of various types of drugs and stimulants on biological samples using a novel plasmophore platform.
Collapse
Affiliation(s)
- Foozieh Sohrabi
- Magneto-plasmonic
Laboratory, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Tannaz Asadishad
- Magneto-plasmonic
Laboratory, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | | | - Tayebeh Mahinroosta
- Magneto-plasmonic
Laboratory, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Sajede Saeidifard
- Magneto-plasmonic
Laboratory, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Seyedeh Mehri Hamidi
- Magneto-plasmonic
Laboratory, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Shirin Farivar
- Life Science and Biotechnology Faculty, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
11
|
Sánchez Muñoz C, Schlawin F. Photon Correlation Spectroscopy as a Witness for Quantum Coherence. PHYSICAL REVIEW LETTERS 2020; 124:203601. [PMID: 32501097 DOI: 10.1103/physrevlett.124.203601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The development of spectroscopic techniques able to detect and verify quantum coherence is a goal of increasing importance given the rapid progress of new quantum technologies, the advances in the field of quantum thermodynamics, and the emergence of new questions in chemistry and biology regarding the possible relevance of quantum coherence in biochemical processes. Ideally, these tools should be able to detect and verify the presence of quantum coherence in both the transient dynamics and the steady state of driven-dissipative systems, such as light-harvesting complexes driven by thermal photons in natural conditions. This requirement poses a challenge for standard laser spectroscopy methods. Here, we propose photon correlation measurements as a new tool to analyze quantum dynamics in molecular aggregates in driven-dissipative situations. We show that the photon correlation statistics of the light emitted in several models of molecular aggregates can signal the presence of coherent dynamics. Deviations from the counting statistics of independent emitters constitute a direct fingerprint of quantum coherence in the steady state. Furthermore, the analysis of frequency resolved photon correlations can signal the presence of coherent dynamics even in the absence of steady state coherence, providing direct spectroscopic access to the much sought-after site energies in molecular aggregates.
Collapse
Affiliation(s)
- Carlos Sánchez Muñoz
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Frank Schlawin
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|