1
|
Chen C, Alfredo YY, Lee YY, Tan CP, Wang Y, Qiu C. Physicochemical and biological characterization of the lipid particles with bovine serum albumin corona. Int J Biol Macromol 2024; 281:136223. [PMID: 39366617 DOI: 10.1016/j.ijbiomac.2024.136223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Diacylglycerol-based nanoparticles are promising bioactive delivery systems. However, limited understanding of their interaction with biological entities restricts their clinical use. This study investigated the protein corona formed on medium and long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (NPs) modified by Polyoxethylene stearate (PEG) and compared to glyceryl tristearate (TG) and cetyl palmitate (CP) nanoparticles. Bovine serum albumin (BSA) formed corona with MLCD NPs through hydrophobic interactions and hydrogen bonding, contributing to a decrease in α-helix, an increase in β-sheet and a change in the microenvironment of Tyr residues. Owing to higher lipid hydrophilicity, MLCD NPs showed a much lower affinity for BSA than TG and CP NPs, and the binding constant with BSA was increased for larger NPs. PEG modification and the protein corona reduced the uptake of NPs by macrophages but exerted little influence on B16 cell. Among the NPs with different lipid core, the MLCD NPs showed a lower macrophages cell uptake but higher B16 cell uptake, suggesting a longer circulation time in blood but higher cancer cell internalization. This work shed light on the interactions between MLCD NPs and proteins, which is significant for application as nanocarriers with improved biological efficacy.
Collapse
Affiliation(s)
- Canfeng Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Ye Alfredo
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Sibgatullina G, Ramazanova I, Salnikov V, Stepanov A, Voloshina A, Sapunova A, Mustafina A, Petrov K, Samigullin D. Increased endocytosis rate and enhanced lysosomal pathway of silica-coated superparamagnetic nanoparticles into M-HeLa cells compared with cultured primary motor neurons. Histochem Cell Biol 2024; 161:507-519. [PMID: 38597938 DOI: 10.1007/s00418-024-02283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.
Collapse
Affiliation(s)
- Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Iliza Ramazanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Alexey Stepanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Konstantin Petrov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia.
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx St., Kazan, 420111, Russia.
| |
Collapse
|
3
|
Fedorenko S, Stepanov A, Bochkova O, Kholin K, Nizameev I, Voloshina A, Tyapkina O, Samigullin D, Kleshnina S, Akhmadeev B, Romashchenko A, Zavjalov E, Amirov R, Mustafina A. Specific nanoarchitecture of silica nanoparticles codoped with the oppositely charged Mn 2+ and Ru 2+ complexes for dual paramagnetic-luminescent contrasting effects. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102665. [PMID: 36822334 DOI: 10.1016/j.nano.2023.102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
The silica nanoparticles (SNs) co-doped with paramagnetic ([Mn(HL)]n-,) and luminescent ([Ru(dipy)3]2+) complexes are represented. The specific distribution of [Mn(HL)]n- within the SNs allows to achieve about ten-fold enhancing in magnetic relaxivities in comparison with those of [Mn(HL)]n- in solutions. The leaching of [Mn(HL)]n- from the shell can be minimized through the co-doping of [Ru(dipy)3]2+ into the core of the SNs. The co-doped SNs exhibit colloid stability in aqueous solutions, including those modeling a blood serum. The surface of the co-doped SNs was also decorated by amino- and carboxy-groups. The cytotoxicity, hemoagglutination and hemolytic activities of the co-doped SNs are on the levels convenient for "in vivo" studies, although the amino-decorated SNs cause more noticeable agglutination and suppression of cell viability. The co-doped SNs being intravenously injected into mice allows to reveal their biodistribution in both ex vivo and in vivo conditions through confocal microscopy and magnetic resonance imaging correspondingly.
Collapse
Affiliation(s)
- Svetlana Fedorenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia.
| | - Alexey Stepanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Olga Bochkova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Kirill Kholin
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russia
| | - Irek Nizameev
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Oksana Tyapkina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., 420111 Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., 420111 Kazan, Russia; Kazan National Research Technical University named after A.N. Tupolev - KAI, 10 K. Marx str., 420111 Kazan, Russia
| | - Sofiya Kleshnina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Bulat Akhmadeev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Alexander Romashchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Evgenii Zavjalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rustem Amirov
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| |
Collapse
|
4
|
Manipulation of New Fluorescent Magnetic Nanoparticles with an Electromagnetic Needle, Allowed Determining the Viscosity of the Cytoplasm of M-HeLa Cells. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have recently begun to be actively used in biomedicine applications, for example, for targeted drug delivery, in tissue engineering, and in magnetic resonance imaging. The study of the magnetic field effect on MNPs internalized into living cells is of particular importance since it allows a non-invasive influence on cellular activity. There is data stating the possibility to manipulate and control individual MNPs utilizing the local magnetic field gradient created by electromagnetic needles (EN). The present work aimed to demonstrate the methodological and technical approach for manipulating the local magnetic field gradient, generated by EN, novel luminescent MNPs internalized in HeLa cancer cells. The controlling of the magnetic field intensity and estimation of the attractive force of EN was demonstrated. Both designs of EN and their main characteristics are also described. Depending on the distance and applied voltage, the attractive force ENs ranged from 0.056 ± 0.002 to 37.85 ± 3.40 pN. As a practical application of the presented, the evaluation of viscous properties of the HeLa cell’s cytoplasm, based on the measurement of the movement rate of MNPs inside cells under impact of a known magnetic force, was carried out; the viscosity was 1.45 ± 0.04 Pa·s.
Collapse
|
5
|
Suslov MA, Sibgatullina GV, Samigullin DV. Simple CO2 Regulator for Laboratory Cell Incubator from Available Components. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Fedorenko SV, Stepanov AS, Bochkova OD, Mustafina AR. Main Processes Facilitating the Formation of Composite Silica-Based Nanocolloids Doped with Complexes of d- and f-Metals and Inorganic Nanoparticles. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Podkolodnaya YA, Kokorina AA, Ponomaryova TS, Goryacheva OA, Drozd DD, Khitrov MS, Huang L, Yu Z, Tang D, Goryacheva IY. Luminescent Composite Carbon/SiO2 Structures: Synthesis and Applications. BIOSENSORS 2022; 12:bios12060392. [PMID: 35735539 PMCID: PMC9221055 DOI: 10.3390/bios12060392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Luminescent carbon nanostructures (CNSs) have attracted great interest from the scientific community due to their photoluminescent properties, structural features, low toxicity, and a great variety of possible applications. Unfortunately, a few problems hinder their further development. These include the difficulties of separating a mixture of nanostructures after synthesis and the dependence of their properties on the environment and the aggregate state. The application of a silica matrix to obtain luminescent composite particles minimizes these problems and improves optical properties, reduces photoluminescence quenching, and leads to wider applications. We describe two methods for the formation of silica composites containing CNSs: inclusion of CNSs into silica particles and their grafting onto the silica surface. Moreover, we present approaches to the synthesis of multifunctional particles. They combine the unique properties of silica and fluorescent CNSs, as well as magnetic, photosensitizing, and luminescent properties via the combination of functional nanoparticles such as iron oxide nanoparticles, titanium dioxide nanoparticles, quantum dots (QDs), and gold nanoclusters (AuNCs). Lastly, we discuss the advantages and challenges of these structures and their applications. The novelty of this review involves the detailed description of the approaches for the silica application as a matrix for the CNSs. This will support researchers in solving fundamental and applied problems of this type of carbon-based nanoobjects.
Collapse
Affiliation(s)
- Yuliya A. Podkolodnaya
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| | - Alina A. Kokorina
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
- Correspondence: ; Tel.: +7-(951)-8861027
| | - Tatiana S. Ponomaryova
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| | - Olga A. Goryacheva
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| | - Daniil D. Drozd
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| | - Mikhail S. Khitrov
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| | - Lingting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou 350108, China; (L.H.); (Z.Y.); (D.T.)
| | - Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou 350108, China; (L.H.); (Z.Y.); (D.T.)
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology, Department of Chemistry, Fuzhou University, Fuzhou 350108, China; (L.H.); (Z.Y.); (D.T.)
| | - Irina Yu. Goryacheva
- Department of Inorganic Chemistry, Chemical Institute, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; (Y.A.P.); (T.S.P.); (O.A.G.); (D.D.D.); (M.S.K.); (I.Y.G.)
| |
Collapse
|
8
|
Tailoring of silica nanoarchitecture to optimize Cu(2−x)S based image-guided chemodynamic therapy agent. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
T2- and T1 relaxivities and magnetic hyperthermia of iron-oxide nanoparticles combined with paramagnetic Gd complexes. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Wang W, Huang Z, Li Y, Wang W, Shi J, Fu F, Huang Y, Pan X, Wu C. Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: A proof-of-concept study. Acta Pharm Sin B 2021; 11:1030-1046. [PMID: 33996415 PMCID: PMC8105779 DOI: 10.1016/j.apsb.2020.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
When nanoparticles were introduced into the biological media, the protein corona would be formed, which endowed the nanoparticles with new bio-identities. Thus, controlling protein corona formation is critical to in vivo therapeutic effect. Controlling the particle size is the most feasible method during design, and the influence of media pH which varies with disease condition is quite important. The impact of particle size and pH on bovine serum albumin (BSA) corona formation of solid lipid nanoparticles (SLNs) was studied here. The BSA corona formation of SLNs with increasing particle size (120-480 nm) in pH 6.0 and 7.4 was investigated. Multiple techniques were employed for visualization study, conformational structure study and mechanism study, etc. "BSA corona-caused aggregation" of SLN2‒3 was revealed in pH 6.0 while the dispersed state of SLNs was maintained in pH 7.4, which significantly affected the secondary structure of BSA and cell uptake of SLNs. The main interaction was driven by van der Waals force plus hydrogen bonding in pH 7.4, while by electrostatic attraction in pH 6.0, and size-dependent adsorption was confirmed. This study provides a systematic insight to the understanding of protein corona formation of SLNs.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanbei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiayu Shi
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Fedorenko S, Elistratova J, Stepanov A, Khazieva A, Mikhailov M, Sokolov M, Kholin K, Nizameev I, Mendes R, Rümmeli M, Gemming T, Weise B, Giebeler L, Mikhailova D, Dutz S, Zahn D, Voloshina A, Sapunova A, Daminova A, Fedosimova S, Mustafina A. ROS-generation and cellular uptake behavior of amino-silica nanoparticles arisen from their uploading by both iron-oxides and hexamolybdenum clusters. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111305. [DOI: 10.1016/j.msec.2020.111305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
|
13
|
Koktysh DS, Pham W. A Combinatorial Approach for the Fabrication of Magneto-Optical Hybrid Nanoparticles. Int J Nanomedicine 2019; 14:9855-9863. [PMID: 31849473 PMCID: PMC6913303 DOI: 10.2147/ijn.s228962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/25/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction The increasing demands for better resolution combined with anatomical information in biomedical imaging necessitate the development of multimodal contrast agents. In this respect, the multivalency of nanotechnology enables the integration of nanomaterials with distinct biophysical properties into a unique probe, capable to exert superior imaging characterstics through synergistic enhancement unmatched by any single modality. Materials and methods Novel magneto-optical hybrid nanoparticles (MOHNPs), comprise semiconductor quantum dots (QDs) tethered on the surface of superparamagnetic iron oxide (SPIO) NPs, were synthesized using a combinatorial approach. The semiconductor components utilized for the synthesis of the hybrid NPs contained cadmium-free QDs, which were stabilized by a variety of functional ligands including thiols, polyethyleneimine (PEI) and amphiphilic polymers. While SPIO NPs were further modified with silica or PEI on the outermost layer. The main mechanism to assemble semiconductor QDs onto the SPIO NPs employed a core-shell approach, in which covalent bonding and electrostatic interaction held the components together. Results The versatility of the NP assembling mechanism described in this work offered a robust and flexible fabrication of MOHNPs. A proof-of-concept study demonstrated desterous coating of folic acid onto the surface of MOHNPs to create a targeted imaging probe. The emission of the resulted hybrid NPs extended in the near-infrared region, suitable for in vivo applications. Conclusion This novel assembling technology offers far-reaching capabilities to generate complex multimodal nanoiamging probes.
Collapse
Affiliation(s)
- Dmitry S Koktysh
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.,Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Wellington Pham
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|