1
|
Li J, Yin C, Wang S, Zhang B, Feng L. Built-in electrophilic/nucleophilic domain of nitrogen-doped carbon nanofiber-confined Ni 2P/Ni 3N nanoparticles for efficient urea-containing water-splitting reactions. Chem Sci 2024; 15:13659-13667. [PMID: 39211499 PMCID: PMC11351610 DOI: 10.1039/d4sc01862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
Transferring urea-containing waste water to clean hydrogen energy has received increasing attention, while challenges are still faced in the sluggish catalytic kinetics of urea oxidation. Herein, a novel hybrid catalyst of Ni2P/Ni3N embedded in nitrogen-doped carbon nanofiber (Ni2P/Ni3N/NCNF) is developed for energy-relevant urea-containing water-splitting reactions. The built-in electrophilic/nucleophilic domain resulting from the electron transfer from Ni2P to Ni3N accelerates the formation of high-valent active Ni species and promotes favourable urea molecule adsorption. A spectral study and theoretical analysis reveal that the negatively shifted Ni d-band centre in Ni2P/Ni3N/NCNF weakens the adsorption of intermediate CO2 and facilitates its desorption, thereby improving the urea oxidation reaction kinetics. The overall reaction process is also optimized by minimizing the energy barrier of the rate-determining step. Following the stability test, the surface reconstruction of the pre-catalyst is discussed, where an amorphous layer of NiOOH as the real active phase is formed on the surface/interface of Ni2P/Ni3N for urea oxidation. Benefiting from these characteristics, a high current density of 151.11 mA cm-2 at 1.54 V vs. RHE is obtained for urea oxidation catalysed by Ni2P/Ni3N/NCNF, exceeding that of most of the similar catalysts. A low cell voltage of 1.39 V is required to reach 10 mA cm-2 for urea electrolysis, which is about 200 mV less than that of the general water electrolysis. The current work will be helpful for the development of advanced catalysts and their application in the urea-containing waste water transfer to clean hydrogen energy.
Collapse
Affiliation(s)
- Jiaxin Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing) Beijing 100083 P.R. China
| | - Chun Yin
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing) Beijing 100083 P.R. China
| | - Ligang Feng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
2
|
Kumar S, Bhanuse GB, Fu YP. Phosphide-Based Electrocatalysts for Urea Electrolysis: Recent Trends and Progress. Chemphyschem 2024; 25:e202300924. [PMID: 38366133 DOI: 10.1002/cphc.202300924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Electrolysis is a trend in producing hydrogen as a fuel for renewable energy development, and urea electrolysis is considered as one of the advanced electrolysis processes, where efficient materials still need to be explored. Notably, urea electrolysis came into existence to counter-part the electrode reactions in water electrolysis, which has hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Among those reactions, OER is sluggish and limits water splitting. Hence, urea electrolysis emerged with urea oxidation reaction (UOR) and HER as their reactions to tackle the water electrolysis. Among the explored materials, noble-metal catalysts are efficient, but their cost and scarcity limit the scaling-up of the Urea electrolysis. Hence, current challenges must be addressed, and novel efficient electrocatalysts are to be implemented to commercialize urea electrolysis technology. Phosphides, as an efficient UOR electrocatalyst, have gained huge attention due to their exceptional lattice structure geometry. The phosphide group benefits the water molecule adsorption and water dissociation, and facilitates the oxyhydrate of the metal site. This review summarizes recent trends in phosphide-based electrocatalysts for urea electrolysis, discusses synthesis strategies and crystal structure relationship with catalytic activity, and presents the challenges of phosphide electrocatalysts in urea electrolysis.
Collapse
Affiliation(s)
- Sanath Kumar
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 974301, Taiwan
| | - Gita B Bhanuse
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 974301, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien, 974301, Taiwan
| |
Collapse
|
3
|
Saha S, Mohan Das G. Interfacial Coupling of Graphene with Nickel Nanoparticles for Water Splitting and Urea Oxidation: A Spectroelectrochemical Investigation. Chemphyschem 2023; 24:e202300526. [PMID: 37555397 DOI: 10.1002/cphc.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Nickel nanoparticle and graphene interfaces of various stoichiometries were created through electrodeposition techniques. The catalytic behavior of the electrodeposited films was investigated through spectro-electrochemical methodologies. UV-vis absorbance spectra of the electrodeposited films are significantly different in the air and alkaline medium. Furthermore, UV-vis and Raman spectroscopy confirmed the coupling of Ni nanoparticles (Ni-NP) with the graphene framework, along with NiO and Ni(OH)2 . A combination of Raman and impedance spectroscopy revealed that the surface adsorption and charge transfer properties of the electrodeposited films are entirely dependent on the defects on graphene structure as well as distribution of Ni-NP on graphene. The electrodeposited films possess heterogeneous catalytic properties with a low overpotential of 50 mV (10 mA/cm-2 ) for hydrogen evolution reaction, as well as 601 mV and 391 mV (at 50 mA/cm-2 ) for the oxygen evolution reaction and urea oxidation reaction, respectively. In addition, eelectrodeposited samples show extraordinary overall water splitting performance by achieving a current density of 10 mA/cm2 at a very low applied potential of 1.38 V. This synergistic coupling of Ni and graphene renders the electrodeposited samples promising candidates as electrodes for overall water splitting in alkaline and urea-supplemented solutions.
Collapse
Affiliation(s)
- Sanjit Saha
- ENSEMBLE3 Centre of Excellence, Wolczynska 133, 01-919, Warsaw, Poland
| | - Gour Mohan Das
- ENSEMBLE3 Centre of Excellence, Wolczynska 133, 01-919, Warsaw, Poland
| |
Collapse
|
4
|
He ZH, Gao JF, Kong LB. An Underlying Nickel Difluoride Material as Bifunctional Electrode for Energy Storage and Hydrogen Evolution Reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Flower-like nickel phosphide catalyst for petroleum resin hydrogenation with enhanced catalytic activity, hydrodesulfurization ability and stability. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Huang X, He R, Wang S, Yang Y, Feng L. High-Valent Ni Species Induced by Inactive MoO 2 for Efficient Urea Oxidation Reaction. Inorg Chem 2022; 61:18318-18324. [DOI: 10.1021/acs.inorgchem.2c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xingyu Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| | - Runze He
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou325035, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou325035, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| |
Collapse
|
7
|
Anuratha KS, Rinawati M, Wu TH, Yeh MH, Lin JY. Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172970. [PMID: 36080007 PMCID: PMC9457967 DOI: 10.3390/nano12172970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 05/27/2023]
Abstract
Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the "hydrogen energy economy" involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated.
Collapse
Affiliation(s)
| | - Mia Rinawati
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Tzu-Ho Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Min-Hsin Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jeng-Yu Lin
- Department of Chemical and Materials Engineering, Tunghai University, Taichung City 40704, Taiwan
| |
Collapse
|
8
|
Amer MS, Arunachalam P, Alsalman AM, Al-Mayouf AM, Almutairi ZA, Aladeemy SA, Hezam M. Facile synthesis of amorphous nickel iron borate grown on carbon paper as stable electrode materials for promoted electrocatalytic urea oxidation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Fang K, Wu T, Hou B, Lin H. Green synthesis of Ni3S2 nanoparticles from a nontoxic sulfur source for urea electrolysis with high catalytic activity. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. NANOMATERIALS 2022; 12:nano12111916. [PMID: 35683771 PMCID: PMC9182062 DOI: 10.3390/nano12111916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022]
Abstract
Developing efficient electrocatalysts for urea oxidation reaction (UOR) can be a promising alternative strategy to substitute the sluggish oxygen evolution reaction (OER), thereby producing hydrogen at a lower cell-voltage. Herein, we synthesized a binder-free thin film of ultrathin sheets of bimetallic Cu-Fe-based metal–organic frameworks (Cu/Fe-MOFs) on a nickel foam via a drop-casting route. In addition to the scalable route, the drop-casted film-electrode demonstrates the lower UOR potentials of 1.59, 1.58, 1.54, 1.51, 1.43 and 1.37 V vs. RHE to achieve the current densities of 2500, 2000, 1000, 500, 100 and 10 mA cm−2, respectively. These UOR potentials are relatively lower than that acquired by the pristine Fe-MOF-based film-electrode synthesized via a similar route. For example, at 1.59 V vs. RHE, the Cu/Fe-MOF electrode exhibits a remarkably ultra-high anodic current density of 2500 mA cm−2, while the pristine Fe-MOF electrode exhibits only 949.10 mA cm−2. It is worth noting that the Cu/Fe-MOF electrode at this potential exhibits an OER current density of only 725 mA cm−2, which is far inconsequential as compared to the UOR current densities, implying the profound impact of the bimetallic cores of the MOFs on catalyzing UOR. In addition, the Cu/Fe-MOF electrode also exhibits a long-term electrochemical robustness during UOR.
Collapse
|
11
|
Pradhan L, Mohanty RI, Bal R, Basu S, Jena BK, Bhanja P. New microporous nickel phosphonate derivatives N, P-codoped nickel oxides and N, O-codoped nickel phosphides: Potential electrocatalysts for water oxidation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Tuning interface density and electronic structure of NiS/Ni3S4 by Mo, Co co-doping for efficient urea electrooxidation reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Sridhar V, Park H. Coordination Polymer Framework-Derived Ni-N-Doped Carbon Nanotubes for Electro-Oxidation of Urea. MATERIALS 2022; 15:ma15062048. [PMID: 35329497 PMCID: PMC8955885 DOI: 10.3390/ma15062048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Electrochemical oxidation of urea (UOR) is critical in the removal of urea from wastewater and energy conservation and storage. Nickel-based catalysts are widely used for urea-ORR, but in all cases, the nickel must be hybridized with carbon materials to improve its conductivity. In this manuscript, we demonstrate the synthesis of a nickel-decorated carbon nanotube (Ni-NCNT) by simple microwave pyrolysis of Dabco (1,4-diazabicyclo[2.2.2]octane)-based coordination polymer frameworks (CPF). The surface structure, morphology and chemical composition of Ni-NCNT were characterized by Raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy (EDS) analysis. SEM studies showed micrometer-long bamboo-shaped CNTs with nickel nanoparticles anchored to the walls and inside the nanotubes. A structural study by TEM and Raman spectra showed that carbon nanotubes are rich in defects due to the presence of nitrogen, and this was confirmed by energy-dispersive X-ray spectroscopy (EDS) maps. When applied as electrocatalysts in urea oxidation reactions (UOR), our newly developed Ni-NCNT shows excellent electrocatalytic activity and stability, making it a versatile catalyst in energy generation and mitigating water contamination.
Collapse
Affiliation(s)
- Vadahanambi Sridhar
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea;
| | - Hyun Park
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea;
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2730
| |
Collapse
|
14
|
Wang S, Zhu J, Wu X, Feng L. Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Kathale BM, Xiao H, Yang S, Yin H, Yu T, Zhou X, Qian L, Xiao J, Lei P, Li X. Fluoride mediated conversion of FeOOH into NiFeOOH for outstanding oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Ma G, Yang N, Xue Y, Zhou G, Wang X. Ethylene Glycol Electrochemical Reforming Using Ruthenium Nanoparticle-Decorated Nickel Phosphide Ultrathin Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42763-42772. [PMID: 34472837 DOI: 10.1021/acsami.1c10971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, ruthenium nanoparticle-decorated ultrathin nickel phosphide nanosheets on nickel foam substrate (Ru/Ni2P/NF) nanocomposites are synthesized conveniently by a cyanogel-NaBH4 method and a subsequent phosphating process, which displays excellent electroactivity for both the hydrogen evolution reaction (HER) and ethylene glycol electro-oxidation reaction (EGEOR) in an alkaline solution. Concretely, at Ru/Ni2P/NF nanocomposites, only 1.37 and -0.13 V potentials are required to obtain a current density of 100 mA cm-2 for EGEOR and HER, respectively. Meanwhile, Ru/Ni2P/NF nanocomposites also exhibit pre-eminent electrocatalytic performance of the long-running process for both EGEOR and HER. Density functional theory calculations demonstrate that the introduction of Ru nanoparticles results in an optimization of the surface adsorption energy and construction of a synergistic catalysis interface, which improve the electrocatalytic performance of nickel phosphide nanosheets. Notably, a symmetric Ru/Ni2P/NF||Ru/Ni2P/NF ethylene glycol electrolyzer needs only 1.14 V electrolysis voltage to obtain 10 mA cm-2 for hydrogen production, which effectively eliminates the H2/O2 explosion risk and highlights an energy-saving mode for electrochemical hydrogen production.
Collapse
Affiliation(s)
- Ge Ma
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong 510631, PR China
| | - Na Yang
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong 510631, PR China
| | - Yafei Xue
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong 510631, PR China
| | - Guofu Zhou
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong 510631, PR China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong 510631, PR China
| |
Collapse
|
17
|
Wen H, Zhang S, Yu T, Yi Z, Guo R. ZIF-67-based catalysts for oxygen evolution reaction. NANOSCALE 2021; 13:12058-12087. [PMID: 34231644 DOI: 10.1039/d1nr01669e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a new type of crystalline porous material, the imidazole zeolite framework (ZIF) has attracted widespread attention due to its ultra-high surface area, large pore volume, and unique advantage of easy functionalization. Developing different methods to control the shape and composition of ZIF is very important for its practical application as catalyst. In recent years, nano-ZIF has been considered an electrode material with excellent oxygen evolution reaction (OER) performance, which provides a new way to research electrolyzed water. This review focuses on the morphological engineering of the original ZIF-67 and its derivatives (core-shell, hollow, and array structures) through doping (cation doping, anion doping, and co-doping), derivative composition engineering (metal oxide, phosphide, sulfide, selenide, and telluride), and the corresponding single-atom catalysis. Besides, combined with DFT calculations, it emphasizes the in-depth understanding of actual active sites and provides insights into the internal mechanism of enhancing the OER and proposes the challenges and prospects of ZIF-67 based electrocatalysts. We summarize the application of ZIF-67 and its derivatives in the OER for the first time, which has significantly guided research in this field.
Collapse
Affiliation(s)
- Hui Wen
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | | | | | | | | |
Collapse
|
18
|
Introduction of surface defects in NiO with effective removal of adsorbed catalyst poisons for improved electrochemical urea oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Li J, Li J, Gong M, Peng C, Wang H, Yang X. Catalyst Design and Progresses for Urea Oxidation Electrolysis in Alkaline Media. Top Catal 2021. [DOI: 10.1007/s11244-021-01453-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Xiao H, Du X, Zhao M, Li Y, Hu T, Wu H, Jia J, Yang N. Structural dependence of electrosynthesized cobalt phosphide/black phosphorus pre-catalyst for oxygen evolution in alkaline media. NANOSCALE 2021; 13:7381-7388. [PMID: 33889884 DOI: 10.1039/d1nr00062d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The integration of black phosphorus (BP) with metal phosphides is known to produce high-performance electrocatalysts for oxygen evolution reduction (OER), although increased stability and prevention of the degradation of their lone pairs would be desirable improvements. In this work, cobalt phosphide (CoP)/BP heterostructures were electrochemically synthesized with a two-electrode system, where cobalt ions were generated in situ at a Co anode, and non-aggregated BP nanosheets (NSs) were exfoliated from the bulky BP cathode. With an electrolysis voltage of 30 V, the CoP/BP heterostructure exhibited a superior and stable OER performance (e.g., an overpotential of 300 mV at 10 mA cm-2, which is 41 mV lower than that obtained with a RuO2 catalyst). The CoOx formed in situ during the OER catalysis and remaining CoP synergistically contributed to the enhanced OER performance. The present strategy provides a new electrosynthetic method to prepare stable BP electrocatalysts and also further expands their electrochemical applications.
Collapse
Affiliation(s)
- He Xiao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Phase structure tuning of graphene supported Ni-NiO Nanoparticles for enhanced urea oxidation performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137755] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Structure engineering of Ni2P by Mo doping for robust electrocatalytic water and methanol oxidation reactions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Liu H, Zhu S, Cui Z, Li Z, Wu S, Liang Y. Ni 2P nanoflakes for the high-performing urea oxidation reaction: linking active sites to a UOR mechanism. NANOSCALE 2021; 13:1759-1769. [PMID: 33432949 DOI: 10.1039/d0nr08025j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urea electrolysis is regarded as an effective method for addressing both energy and environment issues. Herein, we successfully synthesized Ni2P nanoflakes for catalyzing the urea oxidation reaction (UOR). Due to the higher electrical conductivity as well as the prevailing tendency in triggering the UOR via a direct electro-oxidation mechanism, Ni2P nanoflakes exhibit comparable UOR activity (1.33 V vs. RHE for onset-potential, and 95.47 mA·cm-2 at 1.6 V vs. RHE) to the most active state-of-the-art catalysts, rendering them an effective alternative to precious metals such as Pt and Rh. The accelerated proton-coupled electron transfer (PCET) process caused by PO43- facilitates the in situ generation of NiOOH; thus, the UOR process is initiated at a lower onset-potential on Ni2P nanoflakes than on β-Ni(OH)2 nanoflakes. The in situ generated NiOOH instead of the Ni2P phase in Ni2P nanoflakes functions as an active site during the UOR process, while both NiOOH and the Ni2P phase serve as active sites in the OER process. This work provides insights into the understanding of the UOR mechanism and opens a new avenue to design low-cost Ni-based phosphide UOR catalysts.
Collapse
Affiliation(s)
- Haipeng Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
24
|
Li M, Liu H, Feng L. Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
25
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
26
|
Jadhav RG, Das AK. Pulse electrodeposited, morphology controlled organic-inorganic nanohybrids as bifunctional electrocatalysts for urea oxidation. NANOSCALE 2020; 12:23596-23606. [PMID: 33210694 DOI: 10.1039/d0nr07236b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic-inorganic nanohybrids with nanoscale architectures and electrocatalytic properties are emerging as a new branch of advanced functional materials. Herein, nanohybrid organic-inorganic nanosheets are grown on carbon paper via a pulse-electrochemical deposition technique. A benzo[2,1,3]selenadiazole-5-carbonyl protected dipeptide BSeFL (BSe = benzoselenadiazole; F = phenylalanine; and L = leucine) cross-linked with Ni2+ ions (Ni-BSeFL) and nickel hydroxide (Ni(OH)2) in a BSeFL/Ni(OH)2 electrode exhibits stable electrocatalytic activity toward urea oxidation. The cross-linked nanosheet morphology of nanohybrids was optimized by controlling the reduction potential during pulse electrodeposition. The BSeFL/Ni(OH)2 (-1.0 V) nanohybrid deposited at -1.0 V provides abundant active sites of Ni3+ with low charge transfer resistance (RCT) and high exchange current density (J0) at the electrocatalytic interface. The nanohybrids with Ni-BSeFL and Ni(OH)2 show low overpotential and superior stability for electrocatalytic urea electro-oxidation. The BSeFL/Ni(OH)2 (-1.0 V) nanohybrid based electrode requires a low potential of 1.30 V (vs. RHE) to acquire a current density of 10 mA cm-2 for the urea oxidation reaction (UOR) in urea containing alkaline solution which is lower than that for water oxidation in alkaline solution (1.49 V vs. RHE). The organic-inorganic nanohybrid BSeFL/Ni(OH)2 (-1.0 V) shows durability over 10 h for oxygen evolution and urea electro-oxidation, thereby confirming the BSeFL/Ni(OH)2 (-1.0 V) nanohybrid-based electrode as an efficient electrocatalyst.
Collapse
Affiliation(s)
- Rohit G Jadhav
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
27
|
Lei H, Tan S, Ma L, Liu Y, Liang Y, Javed MS, Wang Z, Zhu Z, Mai W. Strongly Coupled NiCo 2O 4 Nanocrystal/MXene Hybrid through In Situ Ni/Co-F Bonds for Efficient Wearable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44639-44647. [PMID: 32815716 DOI: 10.1021/acsami.0c11185] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, owing to the high energy density and excellent security, wearable Zn-air batteries (ZABs) have been known as one of the most prominent wearable energy storage devices. However, sluggish oxygen reaction kinetics of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in the air-breathe cathode seriously has limited further practical applications. In this work, we synthesize a NiCo2O4 nanocrystal/MXene hybrid with strong Ni/Co-F bonds. The prepared MXene-based hybrid composites show remarkable ORR and OER electrocatalytic activity, which results in the fabricated solid-state ZAB device to achieve an open-circuit voltage of 1.40 V, peak power density of 55.1 mW cm-2, and energy efficiency of 66.1% at 1.0 mA cm-2; to the best of our knowledge, this is the record performance among all reported flexible ZABs with MXene-based air cathodes and comparable with some noble metal catalysts. Moreover, even after cutting and suturing, our flexible solid-state ZAB devices are tailorable with high rate of performance.
Collapse
Affiliation(s)
- Hang Lei
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Lujie Ma
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yizhe Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Yongyin Liang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Muhammad Sufyan Javed
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zilong Wang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
28
|
Yu X, Yang C, Zhang S, Xing Y, Liu C, Peng J, Yan Q. Bifunctional Electrocatalyst with 0D/2D Heterostructure for Highly Efficient Hydrogen and Oxygen Generation. Chem Asian J 2020; 15:2892-2899. [PMID: 32677767 DOI: 10.1002/asia.202000419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Indexed: 01/19/2023]
Abstract
A novel MoS2 quantum dots/CoSe2 nanosheet (MoS2 QDs/CoSe2 ) hybrid with 0D/2D heterostructure has been developed. The CoSe2 nanosheets (NSs) enable an excellent oxygen evolution reaction (OER) activity with increasing vacancy configuration on one hand, while the MoS2 QDs serve as an eminent hydrogen evolution reaction (HER) catalyst on the other. By integrating MoS2 QDs and CoSe2 NSs, the hybrid exhibits excellent electrocatalytic performances in HER and OER. The unique 0D/2D hetero-interface increases the exposed active sites and facilitates electron transfer, thereby boosting the electrocatalytic activity. Relatively low overpotentials of 82 mV and 280 mV are required to drive the current density of 10 mA/cm2 for HER and OER, with corresponding Tafel slopes of 69 and 75 mV/dec, respectively. As such, this work provides an efficient yet simple approach to construct bifunctional electrocatalysts with enhanced activity and stability.
Collapse
Affiliation(s)
- Xueping Yu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Chan Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Shan Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Yonglei Xing
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Juan Peng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.,School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
29
|
Gu X, Yang D, Liu Z, Wang S, Feng L. Iron oxide promoted nickel/nickel oxide rough nanorods for efficient urea assisted water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136516] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Hu X, Zhu J, Li J, Wu Q. Urea Electrooxidation: Current Development and Understanding of Ni‐Based Catalysts. ChemElectroChem 2020. [DOI: 10.1002/celc.202000404] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinrang Hu
- Department of ChemistryLishui University Lishui 323000 P R China
| | - Jiaye Zhu
- Department of ChemistryLishui University Lishui 323000 P R China
| | - Jiangfeng Li
- Department of ChemistryLishui University Lishui 323000 P R China
| | - Qingsheng Wu
- School of Chemical Science and EngineeringTongji University Shanghai 200092 P R China
| |
Collapse
|
31
|
Wang S, Yang X, Liu Z, Yang D, Feng L. Efficient nanointerface hybridization in a nickel/cobalt oxide nanorod bundle structure for urea electrolysis. NANOSCALE 2020; 12:10827-10833. [PMID: 32393925 DOI: 10.1039/d0nr01386b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Urea electrolysis has received great attention for the energy-relevant applications, and efficient nanostructured catalysts are required to overcome the sluggish urea oxidation kinetics. Herein, we noticed that the valence state of Ni in the hybrid Ni/Co oxide nanorods can be correlated to the catalytic capability for urea oxidation. Crystal lattice hybridization was found in the interface of Ni/Co oxide nanoparticles that assembled as a nanorod bundle structure. The more or the less of Ni2+/Ni3+ generated lower catalytic ability, and Ni/Co oxide with the optimum content of Ni2+/Ni3+ exhibited the highest catalytic ability for urea oxidation because of the efficient synergism, resulting from the formation of high valence state of Ni species and improved kinetics. A low onset potential of 1.29 V was required for the urea oxidation compared with the high onset potential of 1.52 V for water oxidation; high selectivity for urea oxidation was found in the potential below 1.50 V, and as a promising application for urea-assisted water electrolysis about 190 mV less was required to provide 10 mA cm-2 in the two-electrode system, indicating the energy-efficient nature for hydrogen evolution. The study provides some novel insights into the Ni/Co catalyst design and fabrication with efficient catalytic synergism for electrocatalysis.
Collapse
Affiliation(s)
- Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xudong Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Zong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Dawen Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
32
|
Metal-organic framework-derived Ni@C and NiO@C as anode catalysts for urea fuel cells. Sci Rep 2020; 10:278. [PMID: 31937844 PMCID: PMC6959365 DOI: 10.1038/s41598-019-57139-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 12/23/2019] [Indexed: 12/04/2022] Open
Abstract
Highly porous self-assembled nanostructured Ni@C and NiO@C were synthesized via calcination of a Ni-based metal–organic framework. The morphology, structure, and composition of as synthesized Ni@C and NiO@C were characterized by SEM, FIB-SEM, TEM, and XRD. The electro-catalytic activity of the Ni@C and NiO@C catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the Ni@C had a higher residual carbon content and a higher specific surface area than NiO@C, thus exhibiting an enhanced electrochemical performance for urea oxidation. A direct urea fuel cell with Ni@C as an anode catalyst featured an excellent maximum power density of 13.8 mW cm−2 with 0.33 M urea solution in 1 M KOH as fuel and humidified air as oxidant at 50 °C, additionally showing excellent stability during continuous 20-h operation. Thus, this work showed that the highly porous carbon-supported Ni catalysts derived from Ni-based metal–organic framework can be used for urea oxidation and as an efficient anode material for urea fuel cells.
Collapse
|
33
|
Liu H, Zha M, Liu Z, Tian J, Hu G, Feng L. Synergistically boosting the oxygen evolution reaction of an Fe-MOF via Ni doping and fluorination. Chem Commun (Camb) 2020; 56:7889-7892. [DOI: 10.1039/d0cc03422c] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient approach to boost the oxygen evolution activity of Fe-MOF nanorods was demonstrated by a synergistic strategy of Ni doping and fluorination.
Collapse
Affiliation(s)
- Hui Liu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Meng Zha
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
- Institute for Ecological Research and Pollution Control of Plateau Lakes
| | - Zong Liu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Jingqi Tian
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes
- School of Ecology and Environmental Science
- Yunnan University
- Kunming 650504
- China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
34
|
Chen J, Ci S, Wang G, Senthilkumar N, Zhang M, Xu Q, Wen Z. Ni(OH)
2
Nanosheet Electrocatalyst toward Alkaline Urea Electrolysis for Energy‐Saving Acidic Hydrogen Production. ChemElectroChem 2019. [DOI: 10.1002/celc.201901401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingting Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences, Fuzhou Fujian 350002 China
| | - Suqin Ci
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
| | - Genxiang Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences, Fuzhou Fujian 350002 China
| | - Nangan Senthilkumar
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences, Fuzhou Fujian 350002 China
| | - Mengtian Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences, Fuzhou Fujian 350002 China
| | - Qiuhua Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
| | - Zhenhai Wen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources RecycleNanchang Hangkong University Nanchang 330063 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences, Fuzhou Fujian 350002 China
| |
Collapse
|