1
|
Liu Q, Xia J, Yu Q, Gu P, Yuan Y, Liu K, Huang C, Chen C, Guo X, Qian H. Engineering the Surface Properties of DNA Nanostructures by Tuning the Valency of Assembling Species for Biomedical Applications. Macromol Biosci 2022; 22:e2200248. [PMID: 35983867 DOI: 10.1002/mabi.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Indexed: 12/25/2022]
Abstract
Self-assembled DNA nanostructures hold great potentials in biomedical applications. Nevertheless, the negatively charged DNA backbone and susceptivity to enzyme degradation pose challenges to this regard. Engineering the surface properties of DNA nanostructures by assembling DNA with guest molecules in magnesium-free system is promising to solve these issues. In this study, the polyamines-mediated DNA self-assembly with an emphasis on the valency of polyamines is investigated. Both spermine, spermidine, and putrescine can assemble DNA tetrahedron under appropriate concentrations. The cytotoxicity and cellular uptake efficiencies vary with the polyamine valency. Compared with magnesium-assembled DNA tetrahedron, polyamine-assembled DNA tetrahedron exhibits higher cellular uptake efficiency and serum stability. Circular dichroism spectrum results indicate that polyamines induce DNA conformation slightly shifting from B form to A form. The improved performances of polyamine-assembled DNA tetrahedrons under physiological settings are attributed to the surface properties that altered by guest molecules polyamine. The current study suggests that engineering the surface properties of DNA nanostructures by assembling them with guest cationic species is promising to further their biomedical applications.
Collapse
Affiliation(s)
- Qian Liu
- Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Jingruo Xia
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical University, Nanchong, Sichuan, 637000, China
| | - Qingtao Yu
- Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Gu
- Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Yuan
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Ke Liu
- Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Chaowang Huang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Chunfa Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Xiaolan Guo
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical University, Nanchong, Sichuan, 637000, China
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| |
Collapse
|
2
|
Aye SL, Sato Y. Therapeutic Applications of Programmable DNA Nanostructures. MICROMACHINES 2022; 13:315. [PMID: 35208439 PMCID: PMC8876680 DOI: 10.3390/mi13020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
Deoxyribonucleic acid (DNA) nanotechnology, a frontier in biomedical engineering, is an emerging field that has enabled the engineering of molecular-scale DNA materials with applications in biomedicine such as bioimaging, biodetection, and drug delivery over the past decades. The programmability of DNA nanostructures allows the precise engineering of DNA nanocarriers with controllable shapes, sizes, surface chemistries, and functions to deliver therapeutic and functional payloads to target cells with higher efficiency and enhanced specificity. Programmability and control over design also allow the creation of dynamic devices, such as DNA nanorobots, that can react to external stimuli and execute programmed tasks. This review focuses on the current findings and progress in the field, mainly on the employment of DNA nanostructures such as DNA origami nanorobots, DNA nanotubes, DNA tetrahedra, DNA boxes, and DNA nanoflowers in the biomedical field for therapeutic purposes. We will also discuss the fate of DNA nanostructures in living cells, the major obstacles to overcome, that is, the stability of DNA nanostructures in biomedical applications, and the opportunities for DNA nanostructure-based drug delivery in the future.
Collapse
Affiliation(s)
| | - Yusuke Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan;
| |
Collapse
|
3
|
Zhou W, Liu L, Huang J, Cai Y, Cohen Stuart MA, de Vries R, Wang J. Supramolecular virus-like particles by co-assembly of triblock polypolypeptide and PAMAM dendrimers. SOFT MATTER 2021; 17:5044-5049. [PMID: 33928336 DOI: 10.1039/d1sm00290b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Virus-like particles are of special interest as functional delivery vehicles in a variety of fields ranging from nanomedicine to materials science. Controlled formation of virus-like particles relies on manipulating the assembly of the viral coat proteins. Herein, we report a new assembly system based on a triblock polypolypeptide C4-S10-BK12 and -COONa terminated PAMAM dendrimers. The polypolypeptide has a cationic BK12 block with 12 lysines; its binding with anionic PAMAM triggers the folding of the peptide's middle silk-like block and leads to formation of virus-like nanorods, stabilized against aggregation by the long hydrophilic "C" block of the polypeptide. Varying the dendrimer/polypeptide mixing ratio hardly influences the structure and size of the nanorod. However, increasing the dendrimer generation, that is, increasing the dendrimer size results in increased particle length and height, without affecting the width of the nanorod. The branched structure and well-defined size of the dendrimers allows delicate control of the particle size; it is impossible to achieve similar control over assembly of the polypeptide with linear polyelectrolyte as template. In conclusion, we report a novel protein assembling system with properties resembling a viral coat; the findings may therefore be helpful for designing functional virus-like particles like vaccines.
Collapse
Affiliation(s)
- Wenjuan Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| | - Lei Liu
- Process Department, East China Engineering Science and Technology Co., Ltd, 70 East Wangjiang Road, 230024, Hefei, People's Republic of China
| | - Jianan Huang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| | - Ying Cai
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| | - Renko de Vries
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Strategies to Build Hybrid Protein-DNA Nanostructures. NANOMATERIALS 2021; 11:nano11051332. [PMID: 34070149 PMCID: PMC8158336 DOI: 10.3390/nano11051332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
Proteins and DNA exhibit key physical chemical properties that make them advantageous for building nanostructures with outstanding features. Both DNA and protein nanotechnology have growth notably and proved to be fertile disciplines. The combination of both types of nanotechnologies is helpful to overcome the individual weaknesses and limitations of each one, paving the way for the continuing diversification of structural nanotechnologies. Recent studies have implemented a synergistic combination of both biomolecules to assemble unique and sophisticate protein-DNA nanostructures. These hybrid nanostructures are highly programmable and display remarkable features that create new opportunities to build on the nanoscale. This review focuses on the strategies deployed to create hybrid protein-DNA nanostructures. Here, we discuss strategies such as polymerization, spatial directing and organizing, coating, and rigidizing or folding DNA into particular shapes or moving parts. The enrichment of structural DNA nanotechnology by incorporating protein nanotechnology has been clearly demonstrated and still shows a large potential to create useful and advanced materials with cell-like properties or dynamic systems. It can be expected that structural protein-DNA nanotechnology will open new avenues in the fabrication of nanoassemblies with unique functional applications and enrich the toolbox of bionanotechnology.
Collapse
|
5
|
Wang D, Chen C, Liu Q, Zhao Q, Wu D, Yuan Y, Huang C, Sun X, Huang C, Leong DT, Wang G, Qian H. Functionalizing DNA nanostructures with natural cationic amino acids. Bioact Mater 2021; 6:2946-2955. [PMID: 33732965 PMCID: PMC7930363 DOI: 10.1016/j.bioactmat.2021.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 11/04/2022] Open
Abstract
Complexing self-assembled DNA nanostructures with various functional guest species is the key to unlocking new and exciting biomedical applications. Cationic guest species not only induce magnesium-free DNA to self-assemble into defined structures but also endow the final complex nanomaterials with new properties. Herein, we propose a novel strategy that employs naturally occurring cationic amino acids to induce DNA self-assembly into defined nanostructures. Natural l-arginine and l-lysine can readily induce the assembly of tile-based DNA nanotubes and DNA origami sheets in a magnesium-free manner. The self-assembly processes are demonstrated to be pH- and concentration-dependent and are achieved at constant temperatures. Moreover, the assembled DNA/amino acid complex nanomaterials are stable at a physiological temperature of 37 °C. Substituting l-arginine with its D form enhances its serum stability. Further preliminary examination of this complex nanomaterial platform for biomedical applications indicates that DNA/amino acids exhibit distinct cellular uptake behaviors compared with their magnesium-assembled counterparts. The nanomaterial mainly clusters around the cell membrane and might be utilized to manipulate molecular events on the membrane. Our study suggests that the properties of DNA nanostructures can be tuned by complexing them with customized guest molecules for a designed application. The strategy proposed herein might be promising to advance the biomedical applications of DNA nanostructures. A “noncanonical DNA self-assembly” strategy is proposed. Cationic amino acids can assemble DNA nanostructures in a magnesium-free system. The complex nanomaterial exhibited high structural and serum stability. DNA nanostructures can be engineered with customized guest molecules for multiple applications.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China.,Department of Respiratory Medicine, Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Chunfa Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Qian Liu
- Laboratory of Pharmacy and Chemistry, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qianwen Zhao
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Di Wu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Yue Yuan
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Chaowang Huang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Xiaorong Sun
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Chunji Huang
- Basic Medical College, Third Military Medical University, Chongqing, 400038, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037, China
| |
Collapse
|
6
|
Xu F, Xia Q, Wang P. Rationally Designed DNA Nanostructures for Drug Delivery. Front Chem 2020; 8:751. [PMID: 33195016 PMCID: PMC7542244 DOI: 10.3389/fchem.2020.00751] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
DNA is an excellent biological material that has received growing attention in the field of nanotechnology due to its unique capability for precisely engineering materials via sequence specific interactions. Self-assembled DNA nanostructures of prescribed physicochemical properties have demonstrated potent drug delivery efficiency in vitro and in vivo. By using various conjugation techniques, DNA nanostructures may be precisely integrated with a large diversity of functional moieties, such as targeting ligands, proteins, and inorganic nanoparticles, to enrich their functionalities and to enhance their performance. In this review, we start with introducing strategies on constructing DNA nanostructures. We then summarize the biological barriers ahead of drug delivery using DNA nanostructures, followed by introducing existing rational solutions to overcome these biological barriers. Lastly, we discuss challenges and opportunities for DNA nanostructures toward real applications in clinical settings.
Collapse
Affiliation(s)
- Fan Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xia
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|