1
|
Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024; 22:141. [PMID: 39529078 PMCID: PMC11552210 DOI: 10.1186/s12958-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system can face serious disorders and show reproductive abnormalities under the influence of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting different components of this system, may make female fertility a serious challenge. Animal studies have demonstrated that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capacity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species, induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the development of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplastics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss the results of animal experiments and human research focusing on cellular and molecular pathways.
Collapse
Affiliation(s)
- Hasti Balali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
2
|
Sokolov I. Ultrabright fluorescent particles via physical encapsulation of fluorescent dyes in mesoporous silica: a mini-review. NANOSCALE 2024; 16:10994-11004. [PMID: 38771589 PMCID: PMC11559554 DOI: 10.1039/d4nr00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Harnessing the power of mesoporous silica to encapsulate organic fluorescent dyes has led to the creation of an extraordinary class of nanocomposite photonic materials. These materials stand out for their ability to produce the brightest fluorescent particles known today, surpassing even the luminosity of quantum dots of similar spectrum and size. The synthesis of these materials offers precise control over the shape and size of the particles, ranging from the nano to the multi-micron scale. Just physical encapsulation of the dyes opens new possibilities for mixing different dyes within individual particles, paving the way for nearly limitless multiplexing capabilities. Moreover, this approach lays the groundwork for the development of highly sensitive sensors capable of detecting subtle changes in temperature and acidity at the nanoscale, among other parameters. This mini-review highlights the mechanism of synthesis, explains the nature of ultrabrightness, and describes the recent advancements and future prospects in the field of ultrabright fluorescent mesoporous silica particles, showcasing their potential for various applications.
Collapse
Affiliation(s)
- Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts, USA.
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
- Department of Physics, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
3
|
Prasad R, Peng B, Mendes BB, Kilian HI, Gorain M, Zhang H, Kundu GC, Xia J, Lovell JF, Conde J. Biomimetic bright optotheranostics for metastasis monitoring and multimodal image-guided breast cancer therapeutics. J Control Release 2024; 367:300-315. [PMID: 38281670 DOI: 10.1016/j.jconrel.2024.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Nanoparticle formulations blending optical imaging contrast agents and therapeutics have been a cornerstone of preclinical theranostic applications. However, nanoparticle-based theranostics clinical translation faces challenges on reproducibility, brightness, photostability, biocompatibility, and selective tumor targeting and penetration. In this study, we integrate multimodal imaging and therapeutics within cancer cell-derived nanovesicles, leading to biomimetic bright optotheranostics for monitoring cancer metastasis. Upon NIR light irradiation, the engineered optotheranostics enables deep visualization and precise localization of metastatic lung, liver, and solid breast tumors along with solid tumor ablation. Metastatic cell-derived nanovesicles (∼80 ± 5 nm) are engineered to encapsulate imaging (emissive organic dye and gold nanoparticles) and therapeutic agents (anticancer drug doxorubicin and photothermally active organic indocyanine green dye). Systemic administration of biomimetic bright optotheranostic nanoparticles shows escape from mononuclear phagocytic clearance with (i) rapid tumor accumulation (3 h) and retention (up to 168 h), (ii) real-time monitoring of metastatic lung, liver, and solid breast tumors and (iii) 3-fold image-guided solid tumor reduction. These findings are supported by an improvement of X-ray, fluorescence, and photoacoustic signals while demonstrating a tumor reduction (201 mm3) in comparison with single therapies that includes chemotherapy (134 mm3), photodynamic therapy (72 mm3), and photothermal therapy (88mm3). The proposed innovative platform opens new avenues to improve cancer diagnosis and treatment outcomes by allowing the monitorization of cancer metastasis, allowing the precise cancer imaging, and delivering synergistic therapeutic agents at the solid tumor site.
Collapse
Affiliation(s)
- Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India; Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Berney Peng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hailey I Kilian
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Huijuan Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Gopal Chandra Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India; School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
4
|
Tan Y, Yu D, Feng J, You H, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Toxicity evaluation of silica nanoparticles for delivery applications. Drug Deliv Transl Res 2023:10.1007/s13346-023-01312-z. [PMID: 37024610 DOI: 10.1007/s13346-023-01312-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 04/08/2023]
Abstract
Silica nanoparticles (SiNPs) are being explored as nanocarriers for therapeutics delivery, which can address a number of intrinsic drawbacks of therapeutics. To translate laboratory innovation into clinical application, their potential toxicity has been of great concern. This review attempts to comprehensively summarize the existing literature on the toxicity assessment of SiNPs. The current data suggest that the composition of SiNPs, their physicochemical properties, their administration route, their frequency and duration of administration, and the sex of animal models are related to their tissue and blood toxicity, immunotoxicity, and genotoxicity. However, the correlation between in vitro and in vivo toxicity has not been well established, mainly because both the in vitro and the in vivo-dosed quantities are unrealistic. This article also discusses important factors to consider in the toxicology of SiNPs and current approaches to reducing their toxicity. The aim is to give readers a better understanding of the toxicology of silica nanoparticles and to help identify key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Iraniparast M, Peng B, Sokolov I. Towards the Use of Individual Fluorescent Nanoparticles as Ratiometric Sensors: Spectral Robustness of Ultrabright Nanoporous Silica Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2023; 23:3471. [PMID: 37050530 PMCID: PMC10098630 DOI: 10.3390/s23073471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Here we address an important roadblock that prevents the use of bright fluorescent nanoparticles as individual ratiometric sensors: the possible variation of fluorescence spectra between individual nanoparticles. Ratiometric measurements using florescent dyes have shown their utility in measuring the spatial distribution of temperature, acidity, and concentration of various ions. However, the dyes have a serious limitation in their use as sensors; namely, their fluorescent spectra can change due to interactions with the surrounding dye. Encapsulation of the d, e in a porous material can solve this issue. Recently, we demonstrated the use of ultrabright nanoporous silica nanoparticles (UNSNP) to measure temperature and acidity. The particles have at least two kinds of encapsulated dyes. Ultrahigh brightness of the particles allows measuring of the signal of interest at the single particle level. However, it raises the problem of spectral variation between particles, which is impossible to control at the nanoscale. Here, we study spectral variations between the UNSNP which have two different encapsulated dyes: rhodamine R6G and RB. The dyes can be used to measure temperature. We synthesized these particles using three different ratios of the dyes. We measured the spectra of individual nanoparticles and compared them with simulations. We observed a rather small variation of fluorescence spectra between individual UNSNP, and the spectra were in very good agreement with the results of our simulations. Thus, one can conclude that individual UNSNP can be used as effective ratiometric sensors.
Collapse
Affiliation(s)
- Mahshid Iraniparast
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Berney Peng
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Physics, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
6
|
Buliga DI, Diacon A, Calinescu I, Popa I, Rusen E, Ghebaur A, Tutunaru O, Boscornea CA. Enhancing the light fastness of natural dyes by encapsulation in silica matrix. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
8
|
Al-Thani HF, Shurbaji S, Yalcin HC. Zebrafish as a Model for Anticancer Nanomedicine Studies. Pharmaceuticals (Basel) 2021; 14:625. [PMID: 34203407 PMCID: PMC8308643 DOI: 10.3390/ph14070625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nanomedicine is a new approach to fight against cancer by the development of anticancer nanoparticles (NPs) that are of high sensitivity, specificity, and targeting ability to detect cancer cells, such as the ability of Silica NPs in targeting epithelial cancer cells. However, these anticancer NPs require preclinical testing, and zebrafish is a useful animal model for preclinical studies of anticancer NPs. This model affords a large sample size, optical imaging, and easy genetic manipulation that aid in nanomedicine studies. This review summarizes the numerous advantages of the zebrafish animal model for such investigation, various techniques for inducing cancer in zebrafish, and discusses the methods to assess cancer development in the model and to test for the toxicity of the anticancer drugs and NPs. In addition, it summarizes the recent studies that used zebrafish as a model to test the efficacy of several different anticancer NPs in treating cancer.
Collapse
Affiliation(s)
- Hissa F Al-Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Peerzade SAMA, Makarova N, Sokolov I. Ultrabright Fluorescent Silica Nanoparticles for Dual pH and Temperature Measurements. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1524. [PMID: 34207605 PMCID: PMC8228773 DOI: 10.3390/nano11061524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 11/22/2022]
Abstract
The mesoporous nature of silica nanoparticles provides a novel platform for the development of ultrabright fluorescent particles, which have organic molecular fluorescent dyes physically encapsulated inside the silica pores. The close proximity of the dye molecules, which is possible without fluorescence quenching, gives an advantage of building sensors using FRET coupling between the encapsulated dye molecules. Here we present the use of this approach to demonstrate the assembly of ultrabright fluorescent ratiometric sensors capable of simultaneous acidity (pH) and temperature measurements. FRET pairs of the temperature-responsive, pH-sensitive and reference dyes are physically encapsulated inside the silica matrix of ~50 nm particles. We demonstrate that the particles can be used to measure both the temperature in the biologically relevant range (20 to 50 °C) and pH within 4 to 7 range with the error (mean absolute deviation) of 0.54 °C and 0.09, respectively. Stability of the sensor is demonstrated. The sensitivity of the sensor ranges within 0.2-3% °C-1 for the measurements of temperature and 2-6% pH-1 for acidity.
Collapse
Affiliation(s)
| | - Nadezhda Makarova
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA;
| | - Igor Sokolov
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA;
- Department of Physics, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
10
|
Rong J, He Y, Tang J, Qiao R, Lin S. "Fishing" nano-bio interactions at the key biological barriers. NANOSCALE 2021; 13:5954-5964. [PMID: 33734277 DOI: 10.1039/d1nr00328c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding nano-bio interactions is pivotal to the safe implementation of nanotechnology for both biological and environmental applications. Zebrafish as a model organism provides unique opportunities to dissect nano-bio interactions occurring at different biological barriers. In this review, we focus on four key biological barriers, namely cell membrane, blood-brain barrier (BBB), skin and gill epithelia, and gastrointestinal tract (GIT), and highlight recent advancement achieved by using zebrafish to conduct both visualized observations and mechanistic investigations on a diversity of nano-bio interactions.
Collapse
Affiliation(s)
- Jinyu Rong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China.
| | | | | | | | | |
Collapse
|
11
|
Tao J, Diao L, Chen F, Shen A, Wang S, Jin H, Cai D, Hu Y. pH-Sensitive Nanoparticles Codelivering Docetaxel and Dihydroartemisinin Effectively Treat Breast Cancer by Enhancing Reactive Oxidative Species-Mediated Mitochondrial Apoptosis. Mol Pharm 2020; 18:74-86. [PMID: 33084332 DOI: 10.1021/acs.molpharmaceut.0c00432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor growth and metastasis are the major causes of high mortality in breast cancer. We previously constructed pH-sensitive nanoparticles (D/D NPs) for the codelivery of docetaxel (DTX) and dihydroartemisinin (DHA) and demonstrated that D/D NPs showed anticancer activity in breast cancer cells in vitro. The present study further investigated the therapeutic effect of D/D NPs on orthotopic breast cancer in vivo and examined the antitumor mechanism of D/D NPs. D/D NPs significantly increased the apoptosis of 4T1 cells with a synergistic effect of DTX and DHA. D/D NPs increased reactive oxygen species, reduced mitochondrial membrane potential, increased the expression of p53, and induced cytochrome c release into the cytoplasm to activate caspase-3. In an orthotopic metastatic breast cancer mouse model derived from 4T1 cells, D/D NPs inhibited tumor growth and prevented lung metastasis due to the synergistic effect of DTX and DHA. No distinct changes were observed in the histology of major organs. These results indicate that pH-sensitive D/D NP-based combination therapy may be a promising strategy for the treatment of metastatic breast cancers via the ROS-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Jin Tao
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lu Diao
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fangcheng Chen
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Ao Shen
- The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shutian Wang
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Hongyan Jin
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Danwei Cai
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Ying Hu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
12
|
Prieto-Montero R, Katsumiti A, Cajaraville MP, López-Arbeloa I, Martínez-Martínez V. Functionalized Fluorescent Silica Nanoparticles for Bioimaging of Cancer Cells. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5590. [PMID: 33003513 PMCID: PMC7582890 DOI: 10.3390/s20195590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022]
Abstract
Functionalized fluorescent silica nanoparticles were designed and synthesized to selectively target cancer cells for bioimaging analysis. The synthesis method and characterization of functionalized fluorescent silica nanoparticles (50-60 nm), as well as internalization and subcellular localization in HeLa cells is reported here. The dye, rhodamine 101 (R101) was physically embedded during the sol-gel synthesis. The dye loading was optimized by varying the synthesis conditions (temperature and dye concentration added to the gel) and by the use of different organotriethoxysilanes as a second silica precursor. Additionally, R101, was also covalently bound to the functionalized external surface of the silica nanoparticles. The quantum yields of the dye-doped silica nanoparticles range from 0.25 to 0.50 and demonstrated an enhanced brightness of 230-260 fold respect to the free dye in solution. The shell of the nanoparticles was further decorated with PEG of 2000 Da and folic acid (FA) to ensure good stability in water and to enhance selectivity to cancer cells, respectively. In vitro assays with HeLa cells showed that fluorescent nanoparticles were internalized by cells accumulating exclusively into lysosomes. Quantitative analysis showed a significantly higher accumulation of FA functionalized fluorescent silica nanoparticles compared to nanoparticles without FA, proving that the former may represent good candidates for targeting cancer cells.
Collapse
Affiliation(s)
- Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain; (R.P.-M.); (I.L.-A.)
| | - Alberto Katsumiti
- Departamento de Zoología y Biología Celular Animal, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain; (A.K.); (M.P.C.)
| | - Miren Pilare Cajaraville
- Departamento de Zoología y Biología Celular Animal, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain; (A.K.); (M.P.C.)
| | - Iñigo López-Arbeloa
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain; (R.P.-M.); (I.L.-A.)
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain; (R.P.-M.); (I.L.-A.)
| |
Collapse
|
13
|
Nadar RA, Asokan N, Degli Esposti L, Curci A, Barbanente A, Schlatt L, Karst U, Iafisco M, Margiotta N, Brand M, van den Beucken JJJP, Bornhäuser M, Leeuwenburgh SCG. Preclinical evaluation of platinum-loaded hydroxyapatite nanoparticles in an embryonic zebrafish xenograft model. NANOSCALE 2020; 12:13582-13594. [PMID: 32555916 DOI: 10.1039/d0nr04064a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydroxyapatite (HA) nanoparticles are commonly used as building blocks in the design of bone-substituting biomaterials. Recently, these nanoparticles have been considered for the treatment of metastasis disease, since their pH-dependent dissolution behavior allows for precise tuning of release kinetics of loaded cargo. Herein we show that the capacity of drug-loaded nanoparticles stabilized with citrate ions reduce cancer cell survival in an embryonic zebrafish xenograft model. In particular, in vitro studies demonstrate that PtPP-loaded HA nanoparticles exhibit anti-proliferative activity against breast cancer cells at reduced pH. In vivo studies using an embryonic zebrafish xenograft model reveal that PtPP co-delivered with human breast cancer cells strongly reduce cancer cell survival. Similarly, co-injection of breast cancer cells with citrate-functionalized and PtPP-loaded HA nanoparticles into zebrafish significantly reduces survival of cancer cells due to release of chemotherapeutically active kiteplatin species. These results demonstrate the preclinical efficacy of drug-loaded nanoparticles against human breast cancer cells in a xenogenic embryonic in vivo model.
Collapse
Affiliation(s)
- Robin A Nadar
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Peerzade SAMA, Makarova N, Sokolov I. Ultrabright Fluorescent Silica Nanoparticles for Multiplexed Detection. NANOMATERIALS 2020; 10:nano10050905. [PMID: 32397124 PMCID: PMC7279313 DOI: 10.3390/nano10050905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
Fluorescent tagging is a popular method in biomedical research. Using multiple taggants of different but resolvable fluorescent spectra simultaneously (multiplexing), it is possible to obtain more comprehensive and faster information about various biochemical reactions and diseases, for example, in the method of flow cytometry. Here we report on a first demonstration of the synthesis of ultrabright fluorescent silica nanoporous nanoparticles (Star-dots), which have a large number of complex fluorescence spectra suitable for multiplexed applications. The spectra are obtained via simple physical mixing of different commercially available fluorescent dyes in a synthesizing bath. The resulting particles contain dye molecules encapsulated inside of cylindrical nanochannels of the silica matrix. The distance between the dye molecules is sufficiently small to attain Forster resonance energy transfer (FRET) coupling within a portion of the encapsulated dye molecules. As a result, one can have particles of multiple spectra that can be excited with just one wavelength. We show this for the mixing of five, three, and two dyes. Furthermore, the dyes can be mixed inside of particles in different proportions. This brings another dimension in the complexity of the obtained spectra and makes the number of different resolvable spectra practically unlimited. We demonstrate that the spectra obtained by different mixing of just two dyes inside of each particle can be easily distinguished by using a linear decomposition method. As a practical example, the errors of demultiplexing are measured when sets of a hundred particles are used for tagging.
Collapse
Affiliation(s)
| | - Nadezda Makarova
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA;
| | - Igor Sokolov
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA;
- Department of Physics, Tufts University, Medford, MA 02155, USA
- Correspondence:
| |
Collapse
|
15
|
Qin X, Laroche FFJ, Peerzade SAMA, Lam A, Sokolov I, Feng H. In Vivo Targeting of Xenografted Human Cancer Cells with Functionalized Fluorescent Silica Nanoparticles in Zebrafish. J Vis Exp 2020. [PMID: 32449736 DOI: 10.3791/61187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Developing nanoparticles capable of detecting, targeting, and destroying cancer cells is of great interest in the field of nanomedicine. In vivo animal models are required for bridging the nanotechnology to its biomedical application. The mouse represents the traditional animal model for preclinical testing; however, mice are relatively expensive to keep and have long experimental cycles due to the limited progeny from each mother. The zebrafish has emerged as a powerful model system for developmental and biomedical research, including cancer research. In particular, due to its optical transparency and rapid development, zebrafish embryos are well suited for real-time in vivo monitoring of the behavior of cancer cells and their interactions with their microenvironment. This method was developed to sequentially introduce human cancer cells and functionalized nanoparticles in transparent Casper zebrafish embryos and monitor in vivo recognition and targeting of the cancer cells by nanoparticles in real time. This optimized protocol shows that fluorescently labeled nanoparticles, which are functionalized with folate groups, can specifically recognize and target metastatic human cervical epithelial cancer cells labeled with a different fluorochrome. The recognition and targeting process can occur as early as 30 min postinjection of the nanoparticles tested. The whole experiment only requires the breeding of a few pairs of adult fish and takes less than 4 days to complete. Moreover, zebrafish embryos lack a functional adaptive immune system, allowing the engraftment of a wide range of human cancer cells. Hence, the utility of the protocol described here enables the testing of nanoparticles on various types of human cancer cells, facilitating the selection of optimal nanoparticles in each specific cancer context for future testing in mammals and the clinic.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Cancer Research Center, Boston University School of Medicine
| | - Fabrice F J Laroche
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Cancer Research Center, Boston University School of Medicine
| | | | - Andrew Lam
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Cancer Research Center, Boston University School of Medicine
| | - Igor Sokolov
- Department of Biomedical Engineering, Tufts University; Department of Mechanical Engineering, Tufts University; Department of Physics, Tufts University
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, The Cancer Research Center, Boston University School of Medicine;
| |
Collapse
|
16
|
Zheng S, Li M, Li H, Li C, Li P, Qian L, Yang B. Sandwich-type electrochemical immunosensor for carcinoembryonic antigen detection based on the cooperation of a gold-vertical graphene electrode and gold@silica-methylene blue. J Mater Chem B 2019; 8:298-307. [PMID: 31808501 DOI: 10.1039/c9tb01803d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, a sandwich-type electrochemical (EC) immunosensor was proposed to detect a carcinoembryonic antigen (CEA) based on Au-graphene and Au@SiO2-methylene blue (MB). The Au nanoparticles (NPs)-vertical graphene (VG) electrode efficiently amplifies the response signal by immobilizing a large amount of the coating antibody (Ab) and is characterized by excellent electrocatalytic activity. The MB nanodot-loaded Au@SiO2 carriers with core-shell nanostructure and detection Ab were used to construct the Ab-Au@SiO2-MB label, which improved the sensitivity due to the high EC signal of MB nanodots and the high labeling effect between the detection Ab and MB probe. A novel double-Ab sandwich strategy was developed to further improve the sensitivity and stability based on the same specificity of the coating and detection Abs for the recognition of CEA. Under optimal conditions, the developed EC sensor exhibited a wide linear range from 1 fg mL-1 to 100 ng mL-1, with an ultralow detection limit of 0.8 fg mL-1 (S/N = 3). The feasibility in the clinical application of the EC sensor was verified by the in vitro detection of CEA in human serum.
Collapse
Affiliation(s)
- Siyu Zheng
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China. and Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Penghai Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Lirong Qian
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Baohe Yang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| |
Collapse
|