1
|
Yin Z, Cao J, Li X, Li N. Computational investigation of single and multiple boron atom doped WS 2 monolayers for superior electrocatalytic reduction of nitrogen. Phys Chem Chem Phys 2024; 26:7674-7687. [PMID: 38372006 DOI: 10.1039/d3cp05648a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The efficient conversion of nitrogen into ammonia plays a significant role in our modern society. Therefore, the design and development of associated catalysts have become an area of major research interest. Nowadays, an increasing number of studies have been exploring single-atom or double-atom metal-free electrocatalysts for the N2 reduction reaction, where regulating the precise number of catalyst atoms anchored on the substrate posed a real challenge. Herein, with density functional theory (DFT) simulations, this study investigated the activity of single and multiple B atom doped monolayer WS2 catalysts and observed superior efficiencies for nitrogen fixation and reduction. Computational results reveal that these novel catalysts have excellent thermodynamic stability, suitable adsorption of N2, superior catalytic activity and high selectivity for the nitrogen reduction reaction. Notably, this study clearly illustrates that the steric hindrance arising from the adjacent atoms of catalytic sites can be an effective route for manipulating the catalytic performance, offering new insights for the synthesis of high efficiency catalysts. In summary, this series of novel boron doped monolayer WS2 catalysts does not require precise control of the number of catalytic atoms on the substrate, making their preparation easier.
Collapse
Affiliation(s)
- Zehong Yin
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jingeng Cao
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiuyuan Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Nan Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
2
|
Sun Y, Shi W, Huang A, Sun M, Tu R, Li Z, Wang Z. Structural Design of π-d Conjugated TM x B 3 N 3 S 6 (x=2, 3) Monolayer Toward Electrocatalytic Ammonia Synthesis. CHEMSUSCHEM 2024; 17:e202301021. [PMID: 37701969 DOI: 10.1002/cssc.202301021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted wide attention to be acted as potential electrocatalysts for nitrogen reduction reaction (NRR). However, the coordination environment of the single transition metal (TM) atoms is essential to the catalytic activity for NRR. Herein, we proposed four types of 3-, 4-coordinated and π-d conjugated TMx B3 N3 S6 (x=2, 3, TM=Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Tc, Ru, Hf, Ta, W, Re and Os) monolayers for SACs. Based on density functional theory (DFT) calculations, I-TM2 B3 N3 S6 and III-TM3 B3 N3 S6 are the reasonable 3-coordinated and 4-coordinated structures screening by structure stable optimizations, respectively. Next, the structural configurations, electronic properties and catalytic performances of 30 kinds of the 3-coordinated I-TM2 B3 N3 S6 and 4-coordinated III-TM3 B3 N3 S6 monolayers with different single transition metal atoms were systematically investigated. The results reveal that B3 N3 S6 ligand is an ideal support for TM atoms due to existence of strong TM-S bonds. The 3-coordinated I-V2 B3 N3 S6 is the best SAC with the low limiting potential (UL ) of -0.01 V, excellent stability (Ef =-0.32 eV, Udiss =0.02 V) and remarkable selectivity characteristics. This work not only provides novel π-d conjugated SACs, but also gives theoretical insights into their catalytic activities and offers reference for experimental synthesis.
Collapse
Affiliation(s)
- Yongxiu Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Wenwu Shi
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, P. R. China
| | - Aijian Huang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mengxuan Sun
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Renyong Tu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhijie Li
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhiguo Wang
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
3
|
Chen X, Lu S, Wei Y, Sun M, Wang X, Ma M, Tian J. Basal Plane-Activated Boron-Doped MoS 2 Nanosheets for Efficient Electrochemical Ammonia Synthesis. CHEMSUSCHEM 2023; 16:e202202265. [PMID: 36578171 DOI: 10.1002/cssc.202202265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Under the dual pressure of energy crisis and environmental pollution, ammonia (NH3 ) is an indispensable chemical product in the global economy. The electrocatalytic synthesis of NH3 directly from nitrogen and water using renewable electricity has become one of the most attractive and important topics. Basal plane-activated boron-doped MoS2 nanosheets (B-MoS2 ) as a non-noble metal catalyst with excellent performance for N2 electroreduction are synthesized by a facile one-step hydrothermal method. In 0.1 m Na2 SO4 solution, MoS2 nanosheets doped with 300 mg boric acid (B-MoS2 -300) give rise to a good ammonia yield rate of 75.77 μg h-1 mg-1 cat. at -0.75 V vs. RHE, and an excellent Faradaic efficiency of 40.11 % at -0.60 V vs. RHE. In addition, the B-MoS2 -300 nanosheets show good selectivity and chemical stability, and no hydrazine (N2 H4 ) by-product is generated during the reaction. 15 N isotopic labeling confirms that nitrogen in produced ammonia originates from N2 in the electrolyte. On the one hand, the high conductivity of MoS2 guarantees guarantees a high electron transfer rate from nitrogen to ammonia; on the other hand, the successful incorporation of heteroatom B enlarges the interlayer spacing of MoS2 , and the B atom can act as an active site for basal plane activation, providing more active sites for the nitrogen reduction reaction (NRR). Density functional theory calculations show that the doping of B activates the base plane of 1T-MoS2 , which makes the adsorption of N2 on the base plane easier and promotes the NRR.
Collapse
Affiliation(s)
- Xiaoyue Chen
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Shucao Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Yanjiao Wei
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Mengjie Sun
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Xu Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Min Ma
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| |
Collapse
|
4
|
Sun Y, Shi W, Fu YQ, Yu H, Wang Z, Li Z. The novel π-d conjugated TM 2B 3N 3S 6 (TM = Mo, Ti and W) monolayers as highly active single-atom catalysts for electrocatalytic synthesis of ammonia. J Colloid Interface Sci 2023; 650:1-12. [PMID: 37392494 DOI: 10.1016/j.jcis.2023.06.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Recently, single-atom catalysts (SACs) are receiving significant attention in electrocatalysis fields due to their excellent specific activities and extremely high atomic utilization ratio. Effective loading of metal atoms and high stability of SACs increase the number of exposed active sites, thus significantly improving their catalytic efficiency. Herein, we proposed a series (29 in total) of two-dimensional (2D) conjugated structures of TM2B3N3S6 (TM means those 3d to 5d transition metals) and studied the performance as single-atom catalysts for nitrogen reduction reaction (NRR) using density functional theory (DFT). Results show that TM2B3N3S6 (TM = Mo, Ti and W) monolayers have superior performance for ammonia synthesis with low limiting potentials of -0.38, -0.53 and -0.68 V, respectively. Among them, the Mo2B3N3S6 monolayer shows the best catalytic performance of NRR. Meanwhile, the π conjugated B3N3S6 rings undergo coordinated electron transfer with the d orbitals of TM to exhibit good chargeability, and these TM2B3N3S6 monolayers activate isolated N2 according to the "acceptance-donation" mechanism. We have also verified the good stability (i.e., Ef < 0, and Udiss > 0) and high selectivity (Ud = -0.03, 0.01 and 0.10 V, respectively) of the above four types of monolayers for NRR over hydrogen evolution reaction (HER). The NRR activities have been clarified by multiple-level descriptors (ΔG*N2H, ICOHP, and Ɛd) in the terms of basic characteristics, electronic property, and energy. Moreover, the aqueous solution can promote the NRR process, leading to the reduction of ΔGPDS from 0.38 eV to 0.27 eV for the Mo2B3N3S6 monolayer. However, the TM2B3N3S6 (TM = Mo, Ti and W) also showed excellent stability in aqueous phase. This study proves that the π-d conjugated monolayers of TM2B3N3S6 (TM = Mo, Ti and W) as electrocatalysts show great potentials for the nitrogen reduction.
Collapse
Affiliation(s)
- Yongxiu Sun
- University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Wenwu Shi
- University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Haijian Yu
- Department of Mechanical Engineer, Weihai Secondary Vocational School, Weihai 264213, PR China
| | - Zhiguo Wang
- University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Zhijie Li
- University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
5
|
Bai Z, Wang J, Peng X, Liu Y, Zhang W. Molecular nitrogen induced structural evolution of single transition metal atoms supported by B/N co-doped graphene for enhanced nitrogen electroreduction performance. Phys Chem Chem Phys 2023; 25:27075-27082. [PMID: 37801005 DOI: 10.1039/d3cp03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The structural evolution of local coordination environments of single-atom catalysts (SACs) under reaction conditions plays an important role in the catalytic performance of SACs. Using density functional theory calculations, the possible structural evolution of transition metal single atoms supported by B/N codoped-graphene (TM-B2N2/G) under nitrogen reduction reaction (NRR) conditions is explored and the catalytic performance based on reconstructed SACs is theoretically evaluated. A novel nitrogen adsorption mode on TM-B2N2/G is discovered and the protonation of one of the N atoms results in the TM atoms binding with three N atoms, among which one associates with two B atoms (TM-N3B2/G). It is suggested that the N3B2/G supported tungsten single atom (W-N3B2/G) exhibits excellent N2 activity with a limiting potential of -0.27 V and high ammonia selectivity. Electronic structure analysis indicates that the coordination of N3B2/G redistributes the charge density of central W, shifts its d band center upward and strengthens the interaction of W and the adsorbed nitrogen molecule, thereby endowing it with better NRR performance, compared with that supported by pyridine-3N-doped graphene and pyrrolic-3N-doped graphene.
Collapse
Affiliation(s)
- Zhiqiang Bai
- School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China.
- School of Cable Engineering, Henan Institute of Technology, Xinxiang, Henan, 453000, China
| | - Jian Wang
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, 230088, Anhui, China.
| | - Xiaomeng Peng
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei, 230088, Anhui, China.
| | - Yufang Liu
- School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China.
- Institute of Physics, Henan Academy of Sciences, Zhengzhou, Henan, 450000, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Laboratory for Chemical Technology, Ghent University, Technologiepark-Zwijnaarde 125, B-9052 Ghent, Belgium
| |
Collapse
|
6
|
Ho TH, Bui VQ, Nguyen QAT, Kawazoe Y, Kim SG, Nam PC. Unleashing the power of boron: enhancing nitrogen reduction reaction through defective ReS 2 monolayers. Phys Chem Chem Phys 2023; 25:25389-25397. [PMID: 37705426 DOI: 10.1039/d3cp02647g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Density functional theory (DFT) calculations were utilized to investigate the electrocatalytic potential of single boron (B) atom doping in defective ReS2 monolayers as an active site. Our investigation revealed that B-doped defective ReS2, containing S and S-Re-S defects, demonstrated remarkable conductivity, and emerged as an exceptionally active catalyst for nitrogen reduction reactions (NRR), exhibiting limiting potentials of 0.63 and 0.53 V, respectively. For both cases, we determined the potential by examining the hydrogenation of adsorbed N2* to N2H*. Although the competing hydrogen evolution reaction (HER) process appeared dominant in the S-Re-S defect case, its impact was minimal. The outstanding NRR performance can be ascribed to the robust chemical interactions between B and N atoms. The adsorption of N2 on B weakens the N-N bond, thereby facilitating the formation of NH3. Moreover, we verified the selectivity and stability of the catalysts for NRR. Our findings indicate that B-doped defective ReS2 monolayers hold considerable promise for electrocatalysis in a variety of applications.
Collapse
Affiliation(s)
- Thi H Ho
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Mechanical-Electrical and Computer Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Viet Q Bui
- Advanced Institute of Science and Technology, The University of Danang, 41 Le Duan, Danang, Vietnam.
| | - Quynh Anh T Nguyen
- Advanced Institute of Science and Technology, The University of Danang, 41 Le Duan, Danang, Vietnam.
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8579, Japan
- School of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
- Physics and Nanotechnoloy, SRM Institute of Science and Technology, Kattankurathur, Tamil Nadu, 603203, India
| | - Seong-Gon Kim
- Department of Physics & Astronomy and Center for Computational Sciences, Mississippi State University, Starkville, Mississippi 39762, USA
| | - Pham Cam Nam
- Advanced Institute of Science and Technology, The University of Danang, 41 Le Duan, Danang, Vietnam.
- Faculty of Chemical Engineering, The University of Danang-University of Science and Technology, Danang City 550000, Vietnam
| |
Collapse
|
7
|
Rasool A, Anis I, Bhat SA, Dar MA. Optimizing the NRR activity of single and double boron atom catalysts using a suitable support: a first principles investigation. Phys Chem Chem Phys 2023; 25:22275-22285. [PMID: 37577857 DOI: 10.1039/d3cp02358c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Designing cost effective transition-metal free electrocatalysts for nitrogen fixation under ambient conditions is highly appealing from an industrial point of view. Using density functional theory calculations in combination with the computational hydrogen electrode model, we investigate the N2 activation and reduction activity of ten different model catalysts obtained by supporting single and double boron atoms on five different substrates (viz. GaN, graphene, graphyne, MoS2 and g-C3N4). Our results demonstrate that the single/double boron atom catalysts bind favourably on these substrates, leading to a considerable change in the electronic structure of these materials. The N2 binding and activation results reveal that the substrate plays an important role by promoting the charge transfer from the single/double boron atom catalysts to the antibonding orbitals of *N2 to form strong B-N bonds and subsequently activate the inert NN bond. Double boron atom catalysts supported on graphene, MoS2 and g-C3N4 reveal very high binding energies of -2.38, -2.11 and -1.71 eV respectively, whereas single boron atom catalysts supported on graphene and g-C3N4 monolayers bind N2 with very high binding energies of -1.45 and -2.38 eV, respectively. The N2 binding on these catalysts is further explained by means of orbital projected density of states plots which reflect greater overlap between the N2 and B states for the catalysts, which bind N2 strongly. The simulated reaction pathways reveal that the single and double boron atom catalysts supported on g-C3N4 exhibit excellent catalytic activity with very low limiting potentials of -0.67 and -0.36 V, respectively, while simultaneously suppressing the HER. Thus, the current work provides important insights to advance the design of transition-metal free catalysts for electrochemical nitrogen fixation from an electronic structure point of view.
Collapse
Affiliation(s)
- Anjumun Rasool
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir-192122, India.
| | - Insha Anis
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir-192122, India.
| | - Sajad Ahmad Bhat
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir-192122, India.
| | - Manzoor Ahmad Dar
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir-192122, India.
| |
Collapse
|
8
|
Dar MA. Implications of the Pore Size of Graphitic Carbon Nitride Monolayers on the Selectivity of Dual-Boron Atom Catalysts for the Reduction of N 2 to Urea and Ammonia: A Computational Investigation. Inorg Chem 2023; 62:13672-13679. [PMID: 37555942 DOI: 10.1021/acs.inorgchem.3c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The formation of urea by electrocatalytic means remains a great challenge due to the lack of a suitable catalyst that is capable of not only activating inert N2 and CO2 molecules but also circumventing the complexity associated with subsequent reaction steps leading to urea formation. Herein, by means of comprehensive density functional theory simulations, we investigate the catalytic activity of highly stable transition-metal-free dual-boron atom-doped graphitic carbon-nitride monolayers with different pore sizes toward urea production under ambient conditions. As per the results, dual boron atoms impregnated in g-C2N and g-C6N6 monolayers with large pore diameters can successfully activate the N2 molecule and lead to the spontaneous formation of the *NCO*N intermediate, which is the most crucial step for urea formation via direct coupling of N2 and CO2. Interestingly, the B2@g-C2N and B2@g-C6N6 favor urea production with low limiting potentials of -1.11 and -1.18 V compared to very high limiting potentials of -1.71 and -1.88 V, respectively, for ammonia synthesis, leading to an almost 100% Faradaic efficiency for urea formation over ammonia. The dual-boron doping in g-C3N4 with a smaller pore size depicts comparatively weaker N2 adsorption than g-C2N and g-C6N6 counterparts. Further, B2@g-C3N4 prefers ammonia formation at a very low limiting potential of -0.40 V compared to a very high limiting potential of -2.11 V for urea formation. Thus, our findings clearly highlight the critical role played by the pore size of carbon-nitride monolayers in tuning the reactivity and catalytic activity of dual-boron atom catalysts toward urea formation in a selective manner, thereby providing valuable guidance in exploring other highly efficient urea catalysts.
Collapse
Affiliation(s)
- Manzoor Ahmad Dar
- Department of Chemistry, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| |
Collapse
|
9
|
Fan S, Wang Q, Hu Y, Zhao Q, Li J, Liu G. Efficient electrocatalytic conversion of N2 to NH3 using oxygen-rich vacancy lithium niobate cubes. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Li H, Xu X, Lin X, Chen J, Zhu K, Peng F, Gao F. Introducing oxygen vacancies in a bi-metal oxide nanosphere for promoting electrocatalytic nitrogen reduction. NANOSCALE 2023; 15:4071-4079. [PMID: 36734374 DOI: 10.1039/d2nr06195c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The sluggish breakage of the N-N triple bond, as well as the existence of a competing hydrogen evolution reaction (HER), restricts the nitrogen reduction reaction process. Modification of the catalyst surface to boost N2 adsorption and activation is essential for nitrogen fixation. Herein, we introduced surface oxygen vacancies in bimetal oxide NiMnO3 by pyrolysis at 450 °C (450-NiMnO3) to achieve remarkable NRR activity. The NiMnO3 3D nanosphere with a rough surface could increase catalytically active metal sites and introduce oxygen vacancies that are able to enhance N2 adsorption and further improve the reaction rate. Benefiting from the introduced oxygen vacancies in NiMnO3, 450-NiMnO3 showed excellent performance for nitrogen reduction to ammonia with a high NH3 yield of 31.44 μg h-1 mgcat-1 (at -0.3 V vs. RHE) and a splendid FE of 14.5% (at -0.1 V vs. RHE) in 0.1 M KOH. 450-NiMnO3 also shows high long-term electrochemical stability with excellent selectivity for NH3 formation. 15N isotope labeling experiments further verify that the source of produced ammonia is derived from 450-NiMnO3. The present study opens new avenues for the rational construction of efficient electrocatalysts for the synthesis of ammonia from nitrogen.
Collapse
Affiliation(s)
- Heen Li
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Xiaoyue Xu
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Xiaohu Lin
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Jianmin Chen
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Kunling Zhu
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| |
Collapse
|
11
|
Spin regulation for efficient electrocatalytic N2 reduction over diatomic Fe-Mo catalyst. J Colloid Interface Sci 2023; 630:215-223. [DOI: 10.1016/j.jcis.2022.10.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
12
|
Liu YX, Zhang H, Cheng XL. Electrocatalytic nitrogen fixation performance of two-dimensional Metal-Organic Frameworks Cu3(C6O6) and TM/Cu3(C6O6) from first-principle study. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Ghoshal S, Ghosh A, Roy P, Ball B, Pramanik A, Sarkar P. Recent Progress in Computational Design of Single-Atom/Cluster Catalysts for Electrochemical and Solar-Driven N 2 Fixation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Atish Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Prodyut Roy
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Biswajit Ball
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia723 104, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| |
Collapse
|
14
|
Cao N, Chen S, Di Y, Li C, Qi H, Shao Q, Zhao W, Qin Y, Zang X. High efficiency in overall water-splitting via Co-doping heterointerface-rich NiS2/MoS2 nanosheets electrocatalysts. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Ying Y, Fan K, Qiao J, Huang H. Rational Design of Atomic Site Catalysts for Electrocatalytic Nitrogen Reduction Reaction: One Step Closer to Optimum Activity and Selectivity. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00164-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe electrocatalytic nitrogen reduction reaction (NRR) has been one of the most intriguing catalytic reactions in recent years, providing an energy-saving and environmentally friendly alternative to the conventional Haber–Bosch process for ammonia production. However, the activity and selectivity issues originating from the activation barrier of the NRR intermediates and the competing hydrogen evolution reaction result in the unsatisfactory NH3 yield rate and Faradaic efficiency of current NRR catalysts. Atomic site catalysts (ASCs), an emerging group of heterogeneous catalysts with a high atomic utilization rate, selectivity, and stability, may provide a solution. This article undertakes an exploration and systematic review of a highly significant research area: the principles of designing ASCs for the NRR. Both the theoretical and experimental progress and state-of-the-art techniques in the rational design of ASCs for the NRR are summarized, and the topic is extended to double-atom catalysts and boron-based metal-free ASCs. This review provides guidelines for the rational design of ASCs for the optimum activity and selectivity for the electrocatalytic NRR.
Graphical Abstract
Rational design of atomic site catalysts (ASCs) for nitrogen reduction reaction (NRR) has both scientific and industrial significance. In this review, the recent experimental and theoretical breakthroughs in the design principles of transition metal ASCs for NRR are comprehensively discussed, and the topic is also extended to double-atom catalysts and boron-based metal-free ASCs.
Collapse
|
16
|
Le Y, Wei C, Xue W, Li Y, Zhang Y, Lin W. Nitrogen reduction on crystalline carbon nitride supported by homonuclear bimetallic atoms. J Chem Phys 2022; 157:114704. [DOI: 10.1063/5.0107095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electrocatalytic nitrogen reduction reaction (eNRR) is a new method for sustainable NH3 production, which has attracted much attention in recent years. However, the low Faradic efficiency (FE) due to competitive hydrogen evolution reaction (HER) and inert N≡N triple bond activation hinders its practical application. To find highly efficient electrocatalysts with excellent activity, stability and selectivity, we have studied a series of transition metal dimers (TM2) loaded on poly triazine imide (PTI), a crystalline carbon nitride, by density functional theory (DFT) calculations. The results show that most of the metal dimers have a good stability. Finally, among 26 homonuclear diatomic catalysts, Mo2@PTI, Re2@PTI and Pt2@PTI exhibit a strong capability of suppressing HER with favorable limiting potential of -0.53 V, -0.36 V and -0.63 V, respectively, which can be used as efficient electrocatalysts for NRR. In this study, a homonuclear diatomic eNRR catalyst was designed and screened to provide not only a theoretical basis for the experiments, but also an alternative approach for the sustainable synthesis of ammonia.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Lin
- Chemistry, Fuzhou University, China
| |
Collapse
|
17
|
Chen Z, Liu C, Sun L, Wang T. Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province 310027, China
| | - Chunli Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
18
|
Sun J, Li X, Xiong T, Ling Y, Yang Z. Iron partially occupying sulfur vacancies in WS 2 boosts electrochemical nitrogen fixation at low potentials. Chem Commun (Camb) 2022; 58:7261-7264. [PMID: 35670486 DOI: 10.1039/d2cc01588a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metallic Fe nanoparticles partially occupy the sulfur vacancies at edge sites of WS2 leading to 4-fold higher NRR performance due to the boosted p-d hybridization between Fe and N atoms.
Collapse
Affiliation(s)
- Jiuxiao Sun
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, 430200 Wuhan, P. R. China
| | - Xue Li
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, 430200 Wuhan, P. R. China
| | - Tiantian Xiong
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| | - Ying Ling
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China.
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China. .,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
19
|
Wu Y, He C, Zhang W. "Capture-Backdonation-Recapture" Mechanism for Promoting N 2 Reduction by Heteronuclear Metal-Free Double-Atom Catalysts. J Am Chem Soc 2022; 144:9344-9353. [PMID: 35594427 DOI: 10.1021/jacs.2c01245] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Facing the increasingly serious energy and environmental crisis, the development of heteronuclear metal-free double-atom catalysts is a potential strategy to realize efficient catalytic nitrogen reduction with low energy consumption and no pollution because it could combine the advantages of flexible active sites in double-atom catalysts while also being pollution-free and have high Faraday efficiency in metal-free catalysts simultaneously. However, according to the existing mechanism, the finite orbits of other nonmetallic atoms, except the boron atom, reduce the possibility of metal-free catalysis and hinder the development of heteronuclear metal-free double-atom catalysts. Herein, we propose a new "capture-backdonation-recapture" mechanism, which skillfully uses the electron capture-backdonation-recapture between boron, the substrate, and other nonmetallic elements to solve the above problems. Based on this mechanism, by means of the first-principle calculations, the material structure, adsorption energy, catalytic activity, and selectivity of 36 catalysts are systematically investigated to evaluate their catalytic performance. B-Si@BP1 and B-Si@BP3 are selected for their good catalytic performance and low limiting potentials of -0.14 and -0.10 V, respectively. Meanwhile, the "capture-backdonation-recapture" mechanism is also verified by analyzing the results of adsorption energy and electron transfer. Our work broadens the ideas and lays the theoretical foundation for the development of heteronuclear metal-free double-atom catalysts in the future.
Collapse
Affiliation(s)
- Yibo Wu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenxue Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|
20
|
Boron: A key functional component for designing high-performance heterogeneous catalysts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Li H, Chen S, He M, Jin J, Zhu K, Peng F, Gao F. Self-supported V-doped NiO electrocatalyst achieving a high ammonia yield of 30.55 μg h −1 cm −2 under ambient conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02867k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanadium doped nickel oxide grows on nickel foam exhibits a splendid NH3 yield and a high faradaic efficiency.
Collapse
Affiliation(s)
- Heen Li
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shuheng Chen
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Maoyue He
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jing Jin
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Kunling Zhu
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Faming Gao
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
22
|
Chen Y, Sun F, Tang Q. The active structure of p-block SnNC single-atom electrocatalysts for the oxygen reduction reaction. Phys Chem Chem Phys 2022; 24:27302-27311. [DOI: 10.1039/d2cp03362c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The active structure and activity origin of intriguing SnNC single-atom catalysts in the oxygen reduction reaction are rationalized by theoretical simulations.
Collapse
Affiliation(s)
- Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
23
|
Fu C, Li Y, Wei H. Single boron modulated Graphdiyne nanosheet for efficient electrochemical nitrogen fixation: A First-Principles Study. Phys Chem Chem Phys 2022; 24:19817-19826. [DOI: 10.1039/d2cp01711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electroreduction of dinitrogen (N2) is a promising alternative approach for ammonia synthesis under mild conditions. In this work, metal-free electrocatalysts using a single boron atom doped into graphdiyne (GDY)...
Collapse
|
24
|
Qu M, Xu S, Du A, Zhao C, Sun Q. CO 2 Capture, Separation and Reduction on Boron-Doped MoS 2 , MoSe 2 and Heterostructures with Different Doping Densities: A Theoretical Study. Chemphyschem 2021; 22:2392-2400. [PMID: 34472174 DOI: 10.1002/cphc.202100377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Indexed: 11/11/2022]
Abstract
Designing high-performance materials for CO2 capture and conversion is of great significance to reduce the greenhouse effect and alleviate the energy crisis. The strategy of doping is widely used to improve activity and selectivity of the materials. However, it is unclear how the doping densities influence the materials' properties. Herein, we investigated the mechanism of CO2 capture, separation and conversion on MoS2 , MoSe2 and Janus MoSSe monolayers with different boron doping levels using density functional theory (DFT) simulations. The results indicate that CO2 , H2 and CH4 bind weakly to the monolayers without and with single-atom boron doping, rendering these materials unsuitable for CO2 capture from gas mixtures. In contrast, CO2 binds strongly to monolayers doped with diatomic boron, whereas H2 and CH4 can only form weak interactions with these surfaces. Thus, the monolayers doped with diatomic boron can efficiently capture and separate CO2 from such gas mixtures. The electronic structure analysis demonstrates that monolayers doped with diatomic doped are more prone to donating electrons to CO2 than those with single-atom boron doped, leading to activation of CO2 . The results further indicate that CO2 can be converted to CH4 on diatomic boron doped catalysts, and MoSSe is the most efficient of the surfaces studied for CO2 capture, separation and conversion. In summary, the study provides evidence for the doping density is vital to design materials with particular functions.
Collapse
Affiliation(s)
- Mengnan Qu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou, 215123, China
| | - Shaohua Xu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou, 215123, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Chongjun Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Qiao Sun
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
25
|
Ma M, Li F, Tang Q. Coordination environment engineering on nickel single-atom catalysts for CO 2 electroreduction. NANOSCALE 2021; 13:19133-19143. [PMID: 34779473 DOI: 10.1039/d1nr05742a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coordination engineering has recently emerged as a promising strategy to boost the activity of single atom catalysts (SACs) in electrocatalytic CO2 reduction reactions (CO2RR). Understanding the correlation between activity/selectivity and the coordination environment would enable the rational design of more advanced SACs for CO2 reduction. Herein, via density functional theory (DFT) computations, we systematically studied the effects of coordination environment regulation on the CO2RR activity of Ni SACs on C, N, or B co-doped graphene. The results reveal that the coordination environments can strongly affect the adsorption and reaction characteristics. In the C and/or N coordinated Ni-BXCYNZ (B-free, X = 0), only Ni acts as the active site. While in the B, C and/or N coordinated Ni-BXCYNZ (X ≠ 0), the B has transition-metal-like properties, where B and Ni function as dual-site active centers and concertedly tune the adsorption of CO2RR intermediates. The tunability in the adsorption modes and strengths also results in a weakened linear scaling relationship between *COOH and *CO and causes a significant activity difference. The CO2RR activity and the adsorption energy of *COOH/*CO are correlated to construct a volcano-type activity plot. Most of the B, C, and/or N-coordinated Ni-BXCYNZ (X ≠ 0) are located in the left region where *CO desorption is the most difficult step, while the C and/or N coordinated Ni-BXCYNZ (X = 0) are located in the right region where *COOH formation is the potential-determining step. Among all the possible Ni-BXCYNZ candidates, Ni-B0C3N1 and Ni-B1C1N2-N-oppo are predicted to be the most active and selective catalysts for the CO2RR. Our findings provide insightful guidance for developing highly effective CO2RR catalysts based on a codoped coordination environment.
Collapse
Affiliation(s)
- Mengbo Ma
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Fuhua Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
26
|
Pang Y, Su C, Jia G, Xu L, Shao Z. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chem Soc Rev 2021; 50:12744-12787. [PMID: 34647937 DOI: 10.1039/d1cs00120e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonia (NH3) is essential to serve as the biological building blocks for maintaining organism function, and as the indispensable nitrogenous fertilizers for increasing the yield of nutritious crops. The current Haber-Bosch process for industrial NH3 production is highly energy- and capital-intensive. In light of this, the electroreduction of nitrogen (N2) into valuable NH3, as an alternative, offers a sustainable pathway for the Haber-Bosch transition, because it utilizes renewable electricity and operates under ambient conditions. Identifying highly efficient electrocatalysts remains the priority in the electrochemical nitrogen reduction reaction (NRR), marking superior selectivity, activity, and stability. Two-dimensional (2D) nanomaterials with sufficient exposed active sites, high specific surface area, good conductivity, rich surface defects, and easily tunable electronic properties hold great promise for the adsorption and activation of nitrogen towards sustainable NRR. Therefore, this Review focuses on the fundamental principles and the key metrics being pursued in NRR. Based on the fundamental understanding, the recent efforts devoted to engineering protocols for constructing 2D electrocatalysts towards NRR are presented. Then, the state-of-the-art 2D electrocatalysts for N2 reduction to NH3 are summarized, aiming at providing a comprehensive overview of the structure-performance relationships of 2D electrocatalysts towards NRR. Finally, we propose the challenges and future outlook in this prospective area.
Collapse
Affiliation(s)
- Yingping Pang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China. .,WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia.
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Liqiang Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
27
|
Wu Y, He C, Zhang W. Novel Design Strategy of High Activity Electrocatalysts toward Nitrogen Reduction Reaction via Boron-Transition-Metal Hybrid Double-Atom Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47520-47529. [PMID: 34585912 DOI: 10.1021/acsami.1c11889] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) is a promising method for sustainable production of NH3, which provides an alternative to the traditional Haber-Bosch process. However, the poor Faraday efficiency caused by N≡N triple bond activation and competitive hydrogen evolution reaction (HER) have seriously hindered the application of NRR. In this work, a novel strategy to promote NRR through boron-transition-metal (TM) hybrid double-atom catalysts (HDACs) has been proposed. The excellent catalytic activity of HDACs is attributed to a significant difference of valence electron distribution between boron and TMs, which could better activate N≡N bonds and promote the conversion of NH2 to NH3 compared with boron or metal single-atom catalysts and traditional double-atom catalysts (DACs). Hence, by means of DFT computations, the stability, activity, and selectivity of 29 HDACs are systematically investigated to evaluate their catalytic performance. B-Ti@g-CN and B-Ta@g-CN are screened as excellent nitrogen-fixing catalysts with particularly low limiting potentials of 0.13 and 0.11 V for NRR and rather high potentials of 0.54 and 0.82 V for HER, respectively. This work provides a new idea for the rational design of efficient nitrogen-fixing catalysts and could also be widely used in other catalytic reactions.
Collapse
Affiliation(s)
- Yibo Wu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenxue Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|
28
|
Cheng M, Xiao C, Xie Y. Shedding Light on the Role of Chemical Bond in Catalysis of Nitrogen Fixation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007891. [PMID: 34476865 DOI: 10.1002/adma.202007891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Ammonia (NH3 ) and nitrates are essential for human society because of their widespread utilization for producing medicines, fibers, fertilizers, etc. In recent years, the development on nitrogen fixation under mild reaction conditions has attracted much attention. However, the very low conversion efficiency and ambiguous catalytic mechanism remain the major hurdles for the research of nitrogen fixation. This review aims to clarify the role of chemical bond in catalytic nitrogen fixation by summarizing and analyzing the recent development of nitrogen fixation research. In detail, the atomic-scale mechanism of nitrogen fixation reaction, the various methods to improve the nitrogen fixation performance, and the computational investigation of nitrogen fixation are discussed, all from a chemical bond perspective. It is hoped that this review could trigger more profound pondering and deeper exploration in the field of catalytic nitrogen fixation.
Collapse
Affiliation(s)
- Ming Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, iCHEM, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chong Xiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, iCHEM, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, iCHEM, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
29
|
Tian L, Zhao J, Ren X, Sun X, Wei Q, Wu D. MoS 2 -Based Catalysts for N 2 Electroreduction to NH 3 - An Overview of MoS 2 Optimization Strategies. ChemistryOpen 2021; 10:1041-1054. [PMID: 34661983 PMCID: PMC8522471 DOI: 10.1002/open.202100196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
The nitrogen reduction reaction (NRR) has become an ideal alternative to the Haber-Bosch process, as NRR possesses, among others, the advantage of operating under ambient conditions and saving energy consumption. The key to efficient NRR is to find a suitable electrocatalyst, which helps to break the strong N≡N bond and improves the reaction selectivity. Molybdenum disulfide (MoS2 ) as an emerging layered two-dimensional material has attracted a mass of attention in various fields. In this minireview, we summarize the optimization strategies of MoS2 -based catalysts which have been developed to improve the weak NRR activity of primitive MoS2 . Some theoretical predictions have also been summarized, which can provide direction for optimizing NRR activity of future MoS2 -based materials. Finally, an outlook about the optimization of MoS2 -based catalysts used in electrochemical N2 fixation are given.
Collapse
Affiliation(s)
- Liang Tian
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| | - Jinxiu Zhao
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| | - Xiang Ren
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| | - Xu Sun
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| | - Qin Wei
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| | - Dan Wu
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| |
Collapse
|
30
|
Transition-metal-free boron doped SbN monolayer for N 2 adsorption and reduction to NH 3: A first-principles study. J Colloid Interface Sci 2021; 607:1551-1561. [PMID: 34587530 DOI: 10.1016/j.jcis.2021.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022]
Abstract
Electrochemical nitrogen reduction reaction (NRR) in ambient condition is an efficient and sustainable method to synthesize NH3. In this work, first-principles study was used to discuss the NRR process on B atom doped SbN monolayer. The adsorption of N2 on B-Sb17N18 and B-S18N17 was calculated including the adsorption energy, adsorption distance, and the charge density difference (CDD). Five different reaction pathways of NRR were taken into consideration and the stability of B-SbN was investigated. The results show that, because the energy of unoccupied orbital in sp3 hybridization of B atom is much lower than that in 2pz orbitals, the adsorption of N2 on B-Sb18N17 shows much larger adsorption energy (-1.01 eV with end-on pattern) compared to that of the adsorption on B-Sb17N18. For five different pathways, the 1, 2, and 4 pathways have a smaller limiting potential of about 0.52 V and the limiting step is: *N2 + H+ + e- → *NNH. The 3 and 5 pathways have a larger limiting potential of 0.57 V with hydrogenation step: *NHNH2 + H+ + e- → *NH2NH2. The B-Sb18N17 is structurally and thermally stable even at 500 K. Our theoretical prediction indicates that B atom substitutionally doped SbN monolayer can be a kind of high-performance metal-free NRR catalyst for NH3 synthetization, and the work provides attempts for designing and exploring 2D metal-free NRR catalysts.
Collapse
|
31
|
Fu C, Li Y, Wei H. Double boron atom-doped graphdiynes as efficient metal-free electrocatalysts for nitrogen reduction into ammonia: a first-principles study. Phys Chem Chem Phys 2021; 23:17683-17692. [PMID: 34373884 DOI: 10.1039/d1cp02391h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electroreduction of dinitrogen (N2) is an attractive method for ambient ammonia (NH3) synthesis. In this work, double boron atom-anchored two-dimensional (2D) graphdiyne (GDY-2B) electrocatalysts have been designed and examined for the N2 reduction reaction (NRR) by density functional theory computations. Our calculations revealed that double boron atoms can be strongly embedded in a graphdiyne monolayer. In particular, configuration GDY-2B(S2S2') with two boron atoms substituting two equivalent sp-carbon atoms of diacetylene linkages exhibits excellent catalytic performance for reducing N2, with an extremely low overpotential of 0.12 V. The "pull-pull" mechanism imposed by doped double boron atoms is responsible for the magnificent effect of N2 activation. Besides, the competitive reaction of the hydrogen evolution reaction (HER) is suppressed owing to a large ΔGH* value of -1.25 eV. Based on these results, our study provides useful guidelines for designing effective double atomic catalysts (DACs) based on nonmetal 2D nanosheets for effective electrochemical reduction reactions.
Collapse
Affiliation(s)
- Cheng Fu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Jiangsu Key Lab for NSLSCS, Nanjing Normal University, Nanjing 210097, China.
| | | | | |
Collapse
|
32
|
Huang B, Wu Y, Chen B, Qian Y, Zhou N, Li N. Transition-metal-atom-pairs deposited on g-CN monolayer for nitrogen reduction reaction: Density functional theory calculations. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63745-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
Yang G, Zhao L, Huang G, Liu Z, Yu S, Wang K, Yuan S, Sun Q, Li X, Li N. Electrochemical Fixation of Nitrogen by Promoting N 2 Adsorption and N-N Triple Bond Cleavage on the CoS 2/MoS 2 Nanocomposite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21474-21481. [PMID: 33908250 DOI: 10.1021/acsami.1c04458] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An electrochemical N2 reduction reaction (NRR), as an environmentally benign method to produce NH3, is a suitable alternative to substitute the energy-intensive Haber-Bosch technology. Unfortunately, to date, it is obstructed by the lack of efficient electrocatalysts. Here, a CoS2/MoS2 nanocomposite with CoS2 nanoparticles decorated on MoS2 nanosheets is fabricated and adapted as a catalyst for the NRR. As unveiled by experimental and theoretical results, the strong interaction between CoS2 and MoS2 modulates interfacial charge distribution with electrons transferring from CoS2 to MoS2. Consequently, a local electrophilic region is formed near the CoS2 side, which enables effective N2 absorption. On the other hand, the nucleophilic area formed near the MoS2 side is in favor of breaking stable N≡N, the potential-determining step (*N2 → *N2H) which brings about a much decreased energy barrier than that on pure MoS2. As a result, this catalyst exhibits an excellent NRR performance, NH3 yield and Faradaic efficiency of 54.7 μg·h-1·mg-1 and 20.8%, respectively, far better than most MoS2-based catalysts.
Collapse
Affiliation(s)
- Guohua Yang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Lei Zhao
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Guoqing Huang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhipeng Liu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shuyi Yu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Kaiwen Wang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shisheng Yuan
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Qiwei Sun
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaotian Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Nan Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
34
|
Zhou W, Dong L, Tan L, Tang Q. First-principles study of sulfur vacancy concentration effect on the electronic structures and hydrogen evolution reaction of MoS 2. NANOTECHNOLOGY 2021; 32:145718. [PMID: 33333494 DOI: 10.1088/1361-6528/abd49f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Defect engineering has been widely used in experiments to modulate the electrocatalytic properties of molybdenum disulfide (MoS2). However, the effect of vacancy concentration on the vacancy distribution, electronic properties, and hydrogen evolution reaction (HER) activity remains elusive. Herein, we perform density functional theory (DFT) studies to investigate defective MoS2 with different numbers of sulfur vacancies. In the case of low S-vacancy concentration, the vacancies prefer to agglomerate rather than being dispersed, while at the higher-vacancy concentration, the combination of local point defect and clustered vacancy chain is preferred. The coupling between S-vacancies leads to decreased band gap and increased Mo-H adsorption strength with increasing vacancy concentration. The optimal HER activity is identified to occur below vacancy concentration of 12.50%. Our work provides an atomic-level understanding about the role of S-vacancies in the HER performance of MoS2, and offers useful guidelines for the design of defective MoS2 and other TMDs electrocatalysts.
Collapse
Affiliation(s)
- Wenyu Zhou
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
35
|
Two-dimensional transition metal dichalcogenides for electrocatalytic nitrogen fixation to ammonia: Advances, challenges and perspectives. A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
36
|
Cao J, Li N, Zeng X. Exploring the synergistic effect of B–N doped defective graphdiyne for N 2 fixation. NEW J CHEM 2021. [DOI: 10.1039/d1nj00163a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synergistic effect of B–N can effectively improve the catalytic activity of graphdiyne.
Collapse
Affiliation(s)
- Jingeng Cao
- State Key Laboratory of Explosion Science and Technology
- School of Mechatronical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Nan Li
- State Key Laboratory of Explosion Science and Technology
- School of Mechatronical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Xin Zeng
- State Key Laboratory of Explosion Science and Technology
- School of Mechatronical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| |
Collapse
|
37
|
Zheng G, Li L, Hao S, Zhang X, Tian Z, Chen L. Double Atom Catalysts: Heteronuclear Transition Metal Dimer Anchored on Nitrogen‐Doped Graphene as Superior Electrocatalyst for Nitrogen Reduction Reaction. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guokui Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Zheda Road 38 Hangzhou 310027 China
- Institute of Zhejiang University‐Quzhou Quzhou 324000 China
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Lei Li
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Shaoyun Hao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Zheda Road 38 Hangzhou 310027 China
- Institute of Zhejiang University‐Quzhou Quzhou 324000 China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Zheda Road 38 Hangzhou 310027 China
- Institute of Zhejiang University‐Quzhou Quzhou 324000 China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- Department of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- Department of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
38
|
Patil SB, Wang DY. Exploration and Investigation of Periodic Elements for Electrocatalytic Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002885. [PMID: 32945097 DOI: 10.1002/smll.202002885] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Indexed: 06/11/2023]
Abstract
High demand for green ecosystems has urged the human community to reconsider and revamp the traditional way of synthesis of several compounds. Ammonia (NH3 ) is one such compound whose applications have been extended from fertilizers to explosives and is still being synthesized using the high energy inhaling Haber-Bosch process. Carbon free electrocatalytic nitrogen reduction reaction (NRR) is considered as a potential replacement for the Haber-Bosch method. However, it has few limitations such as low N2 adsorption, selectivity (competitive HER reactions), low yield rate etc. Since it is at the early stage, tremendous efforts have been devoted in understanding the reaction mechanism and screening of the electrocatalysts and electrolytes. In this review, the electrocatalysts are classified based on the periodic table with heat maps of Faraday efficiency and yield rate of NH3 in NRR and their electrocatalytic properties toward NRR are discussed. Also, the activity of each element is discussed and short tables and concise graphs are provided to enable the researchers to understand recent progress on each element. At the end, a perspective is provided on countering the current challenges in NRR. This review may act as handbook for basic NRR understandings, recent progress in NRR, and the design and development of advanced electrocatalysts and systems.
Collapse
Affiliation(s)
- Shivaraj B Patil
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| |
Collapse
|
39
|
Huang B, Wu Y, Luo Y, Zhou N. Double atom-anchored Defective Boron Nitride catalyst for efficient electroreduction of CO2 to CH4: A first principles study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Recent Progress on 2D Transition Metal Compounds-based Electrocatalysts for Efficient Nitrogen Reduction. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0171-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Zhai X, Li L, Liu X, Li Y, Yang J, Yang D, Zhang J, Yan H, Ge G. A DFT screening of single transition atoms supported on MoS 2 as highly efficient electrocatalysts for the nitrogen reduction reaction. NANOSCALE 2020; 12:10035-10043. [PMID: 32319506 DOI: 10.1039/d0nr00030b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of low-cost and highly efficient materials for the electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is an attractive and challenging topic in chemistry. In this study, the electrocatalytic performance of a series of transition metal (TM) atoms supported on MoS2 nanosheets (TM@MoS2) was systematically investigated using density functional theory (DFT) calculations. It was found that Re supported on MoS2 (Re@MoS2) has the best NRR catalytic activity with a limiting potential of -0.43 V, along with high selectivity over the competing hydrogen evolution reaction (HER). Moreover, the ab initio molecular dynamics (AIMD) simulations at 500 K and density of states (DOS) calculations indicated the high thermodynamic stability and excellent electrical conductivity of Re@MoS2. A linear trend between several parameters of single atom catalysts (SACs) and the adsorption Gibbs free energy change of the NH species (ΔG*NH) was observed, indicating the later as a simple descriptor for the facilitated screening of novel SACs. These results pave the way for exploring novel, highly efficient electrocatalysts for the electrochemical NRR under ambient conditions.
Collapse
Affiliation(s)
- Xingwu Zhai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu K, Fu J, Zhu L, Zhang X, Li H, Liu H, Hu J, Liu M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. NANOSCALE 2020; 12:4903-4908. [PMID: 31998913 DOI: 10.1039/c9nr09117c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electrochemical nitrogen reduction reaction (NRR) is one of the most promising routes to produce ammonia under mild conditions. Black phosphorene (BP) has attracted wide attention as an NRR electrocatalyst owing to its high Fermi level and unique electronic structure. However, the low intrinsic activity of surface sites greatly restricts its application in the electrochemical NRR. In this work, we theoretically designed a series of single-atom transition metals anchored on the BP surface with MP3 (M = Fe, Mn, Cr, Mo, W, V and Nb) active sites for the NRR via density functional theory (DFT) calculations. By taking stability, activity and selectivity into consideration, the single-atom W-anchored BP was selected as a promising candidate for the NRR. The energy-favorable enzymatic pathway on W@BP (W atoms adsorb on the surface of BP) and the hybrid pathway on W-BP (W atoms substitute the surface P atoms of BP) have reaction onset potentials of 0.46 and 0.42 V, respectively, indicating that the single-atom W-anchored BP shows high activity towards the NRR. This high performance originates from the WP3 active sites, which act as an electron adaptor to activate N2 by donating electrons, thereby greatly regulating the charge transfer between BP and the reaction intermediates. This study proposes a promising active catalyst and provides theoretical guidance to construct BP-supported transition metal single-atom electrocatalysts for the NRR.
Collapse
Affiliation(s)
- Kang Liu
- School of Physics and Electronics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Junwei Fu
- School of Physics and Electronics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Li Zhu
- School of Physics and Electronics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Xiaodong Zhang
- School of Physics and Electronics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Hongmei Li
- School of Physics and Electronics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, P. R. China
| | - Junhua Hu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, Henan, P. R. China
| | - Min Liu
- School of Physics and Electronics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan, P. R. China.
| |
Collapse
|