1
|
Liu Y, Huang H, Xue L, Sun J, Wang X, Xiong P, Zhu J. Recent advances in the heteroatom doping of perovskite oxides for efficient electrocatalytic reactions. NANOSCALE 2021; 13:19840-19856. [PMID: 34849520 DOI: 10.1039/d1nr05797a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perovskite-type transition metal oxides have emerged as promising electrocatalysts for various electrocatalytic reactions owing to their low cost, compositional tunability and high stability. However, insufficient electrocatalytic activities of pristine perovskite oxides hinder their pathway towards real-world applications. The incorporation of heteroatoms into perovskite oxide structures has been regarded as an efficient way to improve the electrocatalytic performance. This minireview summarizes the recent advances in the heteroatom doping of perovskite oxides as efficient electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). These heteroatom doping strategies are classified based on various types of doping sites. The mechanisms of improved electrocatalytic activities are discussed in detail within different doping sites and various kinds of dopants. Finally, the remaining challenges and perspectives are outlined for future developments of perovskite oxide-based catalysts.
Collapse
Affiliation(s)
- Yifan Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Honglan Huang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Liang Xue
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
2
|
Zou HY, Kong FY, Lu XY, Lu MJ, Zhu YC, Ban R, Zhao WW, Wang W. Enzymatic photoelectrochemical bioassay based on hierarchical CdS/NiO heterojunction for glucose determination. Mikrochim Acta 2021; 188:243. [PMID: 34231032 DOI: 10.1007/s00604-021-04882-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023]
Abstract
The design and development of a 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis is introduced. Specifically, NiO nanoflakes (NFs) were in situ formed on carbon fibers via a facile liquid-phase deposition method followed by an annealing step and subsequent integration with CdS quantum dots (QDs). The glucose oxidase (GOx) was then coated on the photocathode to allow the determination of glucose. Under 5 W 410 nm LED light and at a working voltage of 0.0 V (vs. Ag/AgCl), this method can assay glucose concentrations down to 1.77×10-9 M. The linear range was 5×10-7 M to 1×10-3 M, and the relative standard deviation (RSD) was below 5%. The photocathodic biosensor achieved target detection with high sensitivity and selectivity. This work is expected to stimulate more passion in the development of innovative hierarchical heterostructures for advanced self-powered photocathodic bioanalysis. Design of 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis.
Collapse
Affiliation(s)
- Hui-Yu Zou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xin-Yang Lu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Meng-Jiao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China. .,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China.
| | - Rui Ban
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Sakamaki A, Ogihara H, Yoshida-Hirahara M, Kurokawa H. Precursor accumulation on nanocarbons for the synthesis of LaCoO 3 nanoparticles as electrocatalysts for oxygen evolution reaction. RSC Adv 2021; 11:20313-20321. [PMID: 35479911 PMCID: PMC9034031 DOI: 10.1039/d1ra03762e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 01/03/2023] Open
Abstract
Oxygen evolution reaction (OER) is a key step in energy storage devices. Lanthanum cobaltite (LaCoO3) perovskite is an active catalyst for OER in alkaline solutions, and it is expected to be a low-cost alternative to the state-of-the-art catalysts (IrO2 and RuO2) because transition metals are abundant and inexpensive. For efficient catalysis with LaCoO3, nanosized LaCoO3 with a high surface area is desirable for increasing the number of catalytically active sites. In this study, we developed a novel synthetic route for LaCoO3 nanoparticles by accumulating the precursor molecules over nanocarbons. This precursor accumulation (PA) method for LaCoO3 nanoparticle synthesis is simple and involves the following steps: (1) a commercially available carbon powder is soaked in a solution of the nitrate salts of lanthanum and cobalt and (2) the sample is dried and calcined in air. The LaCoO3 nanoparticles prepared by the PA method have a high specific surface area (12 m2 g−1), comparable to that of conventional LaCoO3 nanoparticles. The morphology of the LaCoO3 nanoparticles is affected by the nanocarbon type, and LaCoO3 nanoparticles with diameters of less than 100 nm were obtained when carbon black (Ketjen black) was used as the support. Further, the sulfur impurities in nanocarbons significantly influence the formation of the perovskite structure. The prepared LaCoO3 nanoparticles show excellent OER activity owing to their high surface area and perovskite structure. The Tafel slope of these LaCoO3 nanoparticles is as low as that of the previously reported active LaCoO3 catalyst. The results strongly suggest that the PA method provides nanosized LaCoO3 without requiring the precise control of chemical reactions, harsh conditions, and/or special apparatus, indicating that it is promising for producing active OER catalysts at a large scale. A simple synthetic process for LaCoO3 nanoparticles based on the accumulation of precursors on nanocarbon supports was presented. The LaCoO3 nanoparticles showed excellent OER activity owing to their high surface area and perovskite structure.![]()
Collapse
Affiliation(s)
- Aoi Sakamaki
- Graduate School of Science and Engineering, Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Hitoshi Ogihara
- Graduate School of Science and Engineering, Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Miru Yoshida-Hirahara
- Graduate School of Science and Engineering, Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Hideki Kurokawa
- Graduate School of Science and Engineering, Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| |
Collapse
|