1
|
Maraj JJ, Ringley JD, Sarles SA. Alamethicin channel inactivation caused by voltage-driven flux of alamethicin. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184386. [PMID: 39343086 DOI: 10.1016/j.bbamem.2024.184386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
We show that voltage alone can inactivate alamethicin channels, which has been previously observed for monazomycin and suzukacillin channels. The voltage required to trigger inactivation is above the potential to form channels, and, like with channel activation, this threshold reduces with increasing peptide concentration and membrane fluidity. Since similar monazomycin channels inactivate via channel break up and translocation, we hypothesized that inactivation of alamethicin channels occurs via the same mechanism. Our data prove this hypothesis to be true through two experiments. First, we show that inactivation of channels at positive voltages when peptides are supplied to only the cis side correlates to new channel activity on the trans side at negative potentials. This result indicates translocation of alamethicin peptides occurs only during voltage-induced inactivation. Second, we measured the ratio of steady-state (with inactivation) to ideal (without inactivation) conductance versus voltage for membranes with equal amounts of alamethicin on both sides and used these values to quantify alamethicin flux. Plotting flux versus steady-state conductance across multiple alamethicin concentrations shows a single linear dependence, signifying that translocated peptides originate from active channels that break up under prolonged voltage. Given the frequent use of alamethicin as model ion channels, these results add important understanding of their kinetic responses when subjected to prolonged, high voltages.
Collapse
Affiliation(s)
- Joshua J Maraj
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Jessie D Ringley
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Stephen A Sarles
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
2
|
Li P, Liu J, Yuan JH, Guo Y, Wang S, Zhang P, Wang W. Artificial Funnel Nanochannel Device Emulates Synaptic Behavior. NANO LETTERS 2024; 24:6192-6200. [PMID: 38666542 DOI: 10.1021/acs.nanolett.3c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Creating artificial synapses that can interact with biological neural systems is critical for developing advanced intelligent systems. However, there are still many difficulties, including device morphology and fluid selection. Based on Micro-Electro-Mechanical System technologies, we utilized two immiscible electrolytes to form a liquid/liquid interface at the tip of a funnel nanochannel, effectively enabling a wafer-level fabrication, interactions between multiple information carriers, and electron-to-chemical signal transitions. The distinctive ionic transport properties successfully achieved a hysteresis in ionic transport, resulting in adjustable multistage conductance gradient and synaptic functions. Notably, the device is similar to biological systems in terms of structure and signal carriers, especially for the low operating voltage (200 mV), which matches the biological neural potential (∼110 mV). This work lays the foundation for realizing the function of iontronics neuromorphic computing at ultralow operating voltages and in-memory computing, which can break the limits of information barriers for brain-machine interfaces.
Collapse
Affiliation(s)
- Peiyue Li
- School of Integrated Circuits, Peking University, Beijing 100871, People's Republic of China
| | - Junjie Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jun-Hui Yuan
- School of Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yechang Guo
- School of Integrated Circuits, Peking University, Beijing 100871, People's Republic of China
| | - Shaofeng Wang
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Pan Zhang
- School of Integrated Circuits, Peking University, Beijing 100871, People's Republic of China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing 100871, People's Republic of China
| | - Wei Wang
- School of Integrated Circuits, Peking University, Beijing 100871, People's Republic of China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing 100871, People's Republic of China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Bogard A, Finn PW, Smith AR, Flacau IM, Whiting R, Fologea D. Modulation of Voltage-Gating and Hysteresis of Lysenin Channels by Cu 2+ Ions. Int J Mol Sci 2023; 24:12996. [PMID: 37629177 PMCID: PMC10455686 DOI: 10.3390/ijms241612996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The intricate voltage regulation presented by lysenin channels reconstituted in artificial lipid membranes leads to a strong hysteresis in conductance, bistability, and memory. Prior investigations on lysenin channels indicate that the hysteresis is modulated by multivalent cations which are also capable of eliciting single-step conformational changes and transitions to stable closed or sub-conducting states. However, the influence on voltage regulation of Cu2+ ions, capable of completely closing the lysenin channels in a two-step process, was not sufficiently addressed. In this respect, we employed electrophysiology approaches to investigate the response of lysenin channels to variable voltage stimuli in the presence of small concentrations of Cu2+ ions. Our experimental results showed that the hysteretic behavior, recorded in response to variable voltage ramps, is accentuated in the presence of Cu2+ ions. Using simultaneous AC/DC stimulation, we were able to determine that Cu2+ prevents the reopening of channels previously closed by depolarizing potentials and the channels remain in the closed state even in the absence of a transmembrane voltage. In addition, we showed that Cu2+ addition reinstates the voltage gating and hysteretic behavior of lysenin channels reconstituted in neutral lipid membranes in which lysenin channels lose their voltage-regulating properties. In the presence of Cu2+ ions, lysenin not only regained the voltage gating but also behaved like a long-term molecular memory controlled by electrical potentials.
Collapse
Affiliation(s)
- Andrew Bogard
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, State University, Boise, ID 83725, USA
| | - Pangaea W. Finn
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Aviana R. Smith
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Ilinca M. Flacau
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Rose Whiting
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, State University, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, State University, Boise, ID 83725, USA
| |
Collapse
|
4
|
Fu T, Fu S, Yao J. Recent progress in bio-voltage memristors working with ultralow voltage of biological amplitude. NANOSCALE 2023; 15:4669-4681. [PMID: 36779566 DOI: 10.1039/d2nr06773k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neuromorphic systems built from memristors that emulate bioelectrical information processing in the brain may overcome the limitations of traditional computing architectures. However, functional emulation alone may still not attain all the merits of bio-computation, which uses action potentials of 50-120 mV at least 10 times lower than signal amplitude in conventional electronics to achieve extraordinary power efficiency and effective functional integration. Reducing the functional voltage in memristors to this biological amplitude can thus advance neuromorphic engineering and bio-emulated integration. This review aims to provide a timely update on the effort and progress in this burgeoning research direction, covering the aspects of device material composition, performance, working mechanism, and potential application.
Collapse
Affiliation(s)
- Tianda Fu
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Shuai Fu
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA 01003, USA
| | - Jun Yao
- Department of Electrical Computer and Engineering, University of Massachusetts, Amherst, MA 01003, USA.
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Basham CM, Spittle S, Sangoro J, El-Beyrouthy J, Freeman E, Sarles SA. Entrapment and Voltage-Driven Reorganization of Hydrophobic Nanoparticles in Planar Phospholipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54558-54571. [PMID: 36459500 DOI: 10.1021/acsami.2c16677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Engineered nanoparticles (NPs) possess diverse physical and chemical properties, which make them attractive agents for targeted cellular interactions within the human body. Once affiliated with the plasma membrane, NPs can become embedded within its hydrophobic core, which can limit the intended therapeutic functionality and affect the associated toxicity. As such, understanding the physical effects of embedded NPs on a plasma membrane is critical to understanding their design and clinical use. Here, we demonstrate that functionalized, hydrophobic gold NPs dissolved in oil can be directly trapped within the hydrophobic interior of a phospholipid membrane assembled using the droplet interface bilayer technique. This approach to model membrane formation preserves lateral lipid diffusion found in cell membranes and permits simultaneous imaging and electrophysiology to study the effects of embedded NPs on the electromechanical properties of the bilayer. We show that trapped NPs enhance ion conductance and lateral membrane tension in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers while lowering the adhesive energy of the joined droplets. Embedded NPs also cause changes in bilayer capacitance and area in response to applied voltage, which are nonmonotonic for DOPC bilayers. This electrophysical characterization can reveal NP entrapment without relying on changes in membrane thickness. By evaluating the energetic components of membrane tension under an applied potential, we demonstrate that these nonmonotonic, voltage-dependent responses are caused by reversible clustering of NPs within the unsaturated DOPC membrane core; aggregates form spontaneously at low voltages and are dispersed by higher transmembrane potentials of magnitude similar to those found in the cellular environment. These findings allow for a better understanding of lipid-dependent NP interactions, while providing a platform to study relationships between other hydrophobic nanomaterials and organic membranes.
Collapse
Affiliation(s)
- Colin M Basham
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joyce El-Beyrouthy
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Eric Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Stephen A Sarles
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
6
|
Koner S, Tawfik J, Mashali F, Kennison KB, McClintic WT, Heberle FA, Tu YM, Kumar M, Sarles SA. Homogeneous hybrid droplet interface bilayers assembled from binary mixtures of DPhPC phospholipids and PB-b-PEO diblock copolymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183997. [PMID: 35718208 DOI: 10.1016/j.bbamem.2022.183997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Hybrid membranes built from phospholipids and amphiphilic block copolymers seek to capitalize on the benefits of both constituents for constructing biomimetic interfaces with improved performance. However, hybrid membranes have not been formed or studied using the droplet interface bilayer (DIB) method, an approach that offers advantages for revealing nanoscale changes in membrane structure and mechanics and offers a path toward assembling higher-order tissues. We report on hybrid droplet interface bilayers (hDIBs) formed in hexadecane from binary mixtures of synthetic diphytanoyl phosphatidylcholine (DPhPC) lipids and low molecular weight 1,2 polybutadiene-b-polyethylene oxide (PBPEO) amphiphilic block copolymers and use electrophysiology measurements and imaging to assess the effects of PBPEO in the membrane. This work reveals that hDIBs containing up to 15 mol% PBPEO plus DPhPC are homogeneously mixtures of lipids and polymers, remain highly resistive to ion transport, and are stable-including under applied voltage. Moreover, they exhibit hydrophobic thicknesses similar to DPhPC-only bilayers, but also have significantly lower values of membrane tension. These characteristics coincide with reduced energy of adhesion between droplets and the formation of alamethicin ion channels at significantly lower threshold voltages, demonstrating that even moderate amounts of amphiphilic block copolymers in a lipid bilayer provide a route for tuning the physical properties of a biomimetic membrane.
Collapse
Affiliation(s)
- Subhadeep Koner
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Joseph Tawfik
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Farzin Mashali
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kristen B Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Yu-Ming Tu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Sarles
- Department of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
7
|
Xu J, Zhao X, Zhao X, Wang Z, Tang Q, Xu H, Liu Y. Memristors with Biomaterials for Biorealistic Neuromorphic Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jiaqi Xu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xiaoning Zhao
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xiaoli Zhao
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Zhongqiang Wang
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Qingxin Tang
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Haiyang Xu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Yichun Liu
- Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education Northeast Normal University Changchun 130024 China
| |
Collapse
|
8
|
Enhancing membrane-based soft materials with magnetic reconfiguration events. Sci Rep 2022; 12:1703. [PMID: 35105905 PMCID: PMC8807651 DOI: 10.1038/s41598-022-05501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
Adaptive and bioinspired droplet-based materials are built using the droplet interface bilayer (DIB) technique, assembling networks of lipid membranes through adhered microdroplets. The properties of these lipid membranes are linked to the properties of the droplets forming the interface. Consequently, rearranging the relative positions of the droplets within the network will also alter the properties of the lipid membranes formed between them, modifying the transmembrane exchanges between neighboring compartments. In this work, we achieved this through the use of magnetic fluids or ferrofluids selectively dispersed within the droplet-phase of DIB structures. First, the ferrofluid DIB properties are optimized for reconfiguration using a coupled experimental-computational approach, exploring the ideal parameters for droplet manipulation through magnetic fields. Next, these findings are applied towards larger, magnetically-heterogeneous collections of DIBs to investigate magnetically-driven reconfiguration events. Activating electromagnets bordering the DIB networks generates rearrangement events by separating and reforming the interfacial membranes bordering the dispersed magnetic compartments. These findings enable the production of dynamic droplet networks capable of modifying their underlying membranous architecture through magnetic forces.
Collapse
|
9
|
Makhoul-Mansour MM, Challita EJ, Chaurasia A, Leo DJ, Sukharev S, Freeman EC. A skin-inspired soft material with directional mechanosensation. BIOINSPIRATION & BIOMIMETICS 2021; 16:046014. [PMID: 33848998 DOI: 10.1088/1748-3190/abf746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Lessons about artificial sensor design may be taken from evolutionarily perfected physiological systems. Mechanosensory cells in human skin are exquisitely sensitive to gentle touch and enable us to distinguish objects of different stiffnesses and textures. These cells are embedded in soft epidermal layers of gel-like consistency. Reproducing these mechanosensing capabilities in new soft materials may lead to the development of adaptive mechanosensors which will further enhance the abilities of engineered membrane-based structures with bioinspired sensing strategies. This strategy is explored here using droplet interface bilayers embedded within a thermoreversible organogel. The interface between two lipid-coated aqueous inclusions contained within a soft polymeric matrix forms a lipid bilayer resembling the lipid matrix of cell membranes. These interfaces are functionalized with bacterial mechanosensitive channels (V23T MscL) which convert membrane tension into changes in membrane conductance, mimicking mechanosensitive channel activation in mammalian mechanosensory cells. The distortion of encapsulated adhered droplets by cyclical external forces are first explored using a finite element composite model illustrating the directional propagation of mechanical disturbances imposed by a piston. The model predicts that the orientation of the droplet pair forming the membrane relative to the direction of the compression plays a role in the membrane response. The directional dependence of mechanosensitive channel activation in response to gel compression is confirmed experimentally and shows that purely compressive perturbations normal to the interface invoke different channel activities as compared to shearing displacement along a plane of the membrane. The developed system containing specially positioned pairs of droplets functionalized with bacterial mechanosensitive channels and embedded in a gel creates a skin-inspired soft material with a directional response to mechanical perturbation.
Collapse
Affiliation(s)
| | - Elio J Challita
- College of Engineering, University of Georgia, Athens, GA, United States of America
- George W. Woodruff School of Mechanical Engineering, Georgia Tech, Atlanta, GA, United States of America
- School of Chemical & Biomolecular Engineering, Georgia Tech, Atlanta, GA, United States of America
| | | | - Donald J Leo
- College of Engineering, University of Georgia, Athens, GA, United States of America
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, MD, United States of America
| | - Eric C Freeman
- College of Engineering, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
10
|
Makhoul-Mansour MM, Freeman EC. Droplet-Based Membranous Soft Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3231-3247. [PMID: 33686860 DOI: 10.1021/acs.langmuir.0c03289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the structure and functionality of natural cellular tissues, droplet interface bilayer (DIB)-based materials strategically combine model membrane assembly techniques and droplet microfluidics. These structures have shown promising results in applications ranging from biological computing to chemical microrobots. This Feature Article briefly explores recent advances in the areas of construction, manipulation, and functionalization of DIB networks; discusses their unique mechanics; and focuses on the contributions of our lab in the advancement of this platform. We also reflect on some of the limitations facing DIB-based materials and how they might be addressed, highlighting promising applications made possible through the refinement of the material concept.
Collapse
Affiliation(s)
- Michelle M Makhoul-Mansour
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Eric C Freeman
- School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Wu L, Wang Z, Wang B, Chen Q, Bao L, Yu Z, Yang Y, Ling Y, Qin Y, Tang K, Cai Y, Huang R. Emulation of biphasic plasticity in retinal electrical synapses for light-adaptive pattern pre-processing. NANOSCALE 2021; 13:3483-3492. [PMID: 33475123 DOI: 10.1039/d0nr08012h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrical synapses provide rapid, bidirectional communication in nervous systems, accomplishing tasks distinct from and complementary to chemical synapses. Here, we demonstrate an artificial electrical synapse based on second-order conductance transition (SOCT) in an Ag-based memristor for the first time. High-resolution transmission electron microscopy indicates that SOCT is mediated by the virtual silver electrode. Besides the conventional chemical synaptic behaviors, the biphasic plasticity of electrical synapses is well emulated by integrating the device with a photosensitive element to form an optical pre-processing unit (OPU), which contributes to the retinal neural circuitry and is adaptive to ambient illumination. By synergizing the OPU and spiking neural network (SNN), adaptive pattern recognition tasks are accomplished under different light and noise settings. This work not only contributes to the further completion of synaptic behaviour for hardware-level neuromorphic computing, but also potentially enables image pre-processing with light adaptation and noise suppression for adaptive visual recognition.
Collapse
Affiliation(s)
- Lindong Wu
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Zongwei Wang
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China. and Advanced Institute of Information Technology (AIIT), Peking University, Hangzhou, Zhejiang 311215, P. R. China
| | - Bowen Wang
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Qingyu Chen
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Lin Bao
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Zhizhen Yu
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Yunfan Yang
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Yaotian Ling
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Yabo Qin
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Kechao Tang
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China.
| | - Yimao Cai
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China. and Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, P. R. China
| | - Ru Huang
- Institute of Microelectronics, Peking University, Beijing 100871, P. R. China. and Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
12
|
Ge J, Li D, Huang C, Zhao X, Qin J, Liu H, Ye W, Xu W, Liu Z, Pan S. Memristive synapses with high reproducibility for flexible neuromorphic networks based on biological nanocomposites. NANOSCALE 2020; 12:720-730. [PMID: 31829372 DOI: 10.1039/c9nr08001e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Memristive synapses from biomaterials are promising for building flexible and implantable artificial neuromorphic systems due to their remarkable mechanical and biological properties. However, these biological devices have relatively poor memristive switching characteristics, and thus fail to meet the requirement of neuromorphic networks for high learning accuracy. Here, memristive synapses based on carrageenan nanocomposites that possess desirable characteristics are demonstrated. These devices show highly reproducible analog resistive switching behaviors with 250 conductance states, low write noise, good write linearity, high retention of more than 104 s and endurance for at least 106 pulses. The enhanced switching properties are attributed to controllable and confined conductive filament growth, owing to the synergistic effect of self-assembled silver nanocluster doping and nanocone-shaped electrode contact. Moreover, the devices exhibit excellent reliability after 1000 bending cycles. Simulations including the non-ideal factors prove that the synaptic device array can operate with an online learning accuracy of 94.3%. These findings enable broader applications of biomaterials in flexible memristive devices and neuromorphic systems.
Collapse
Affiliation(s)
- Jun Ge
- Solid State Physics & Material Research Laboratory, School of Physics and Electronic Engineering, Guangzhou University, Guangzhou, 510006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|