1
|
Sun Y, Du Z, Zhang H, Wang H, Sasayama T, Yoshida T. Simultaneous estimation of magnetic moment and Brownian relaxation time distributions of magnetic nanoparticles based on magnetic particle spectroscopy for biosensing application. NANOSCALE 2023; 15:16089-16102. [PMID: 37751148 DOI: 10.1039/d3nr02860g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Magnetic nanoparticles (MNPs) exhibit unique physicochemical characteristics owing to their comparable dimensions with important biological substances, high surface-to-volume ratios, size-dependent magnetic properties, and temperature sensitivity. In this study, we present a novel method for simultaneously estimating the magnetic moment and Brownian relaxation time distribution of MNPs based on AC magnetization harmonics. We provide a detailed description of the theoretical framework and experimental procedures. The dynamics of MNP magnetization are described using the Fokker-Planck equation, and a matrix equation is established to connect the magnetic moment, Brownian relaxation time, and magnetization harmonics. By employing a non-negative linear least squares algorithm with constraints, the magnetic moment and Brownian relaxation time distributions are inversed, which are then converted into the distributions of core sizes and hydrodynamic sizes. Finally, the estimated core size distribution reconstructed from M-H curves is consistent with the hydrodynamic size distribution measured by dynamic light scattering. This method is particularly useful for facilitating quantitative magnetic immunoassays.
Collapse
Affiliation(s)
- Yi Sun
- Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka, Japan.
| | - Zhongzhou Du
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Haochen Zhang
- Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka, Japan.
| | - Haozhe Wang
- Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka, Japan.
| | - Teruyoshi Sasayama
- Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka, Japan.
| | - Takashi Yoshida
- Department of Electrical and Electronic Engineering, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Barrera G, Allia P, Tiberto P. Multifunctional effects in magnetic nanoparticles for precision medicine: combining magnetic particle thermometry and hyperthermia. NANOSCALE ADVANCES 2023; 5:4080-4094. [PMID: 37560417 PMCID: PMC10408592 DOI: 10.1039/d3na00197k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
An effective combination of magnetic hyperthermia and thermometry is shown to be implementable by using magnetic nanoparticles which behave either as a heat sources or as temperature sensors when excited at two different frequencies. Noninteracting magnetite nanoparticles are modeled as double-well systems and their magnetization is obtained by solving rate equations. Two temperature sensitive properties derived from the cyclic magnetization and exhibiting a linear dependence on temperature are studied and compared for monodisperse and polydisperse nanoparticles. The multifunctional effects enabling the combination of magnetic hyperthermia and thermometry are shown to depend on the interplay among nanoparticle size, intrinsic magnetic properties and driving-field frequency. Magnetic hyperthermia and thermometry can be effectively combined by properly tailoring the magnetic properties of nanoparticles and the driving-field frequencies.
Collapse
Affiliation(s)
- Gabriele Barrera
- INRiM, Advanced Materials Metrology and Life Sciences Torino I-10135 Italy
| | - Paolo Allia
- INRiM, Advanced Materials Metrology and Life Sciences Torino I-10135 Italy
| | - Paola Tiberto
- INRiM, Advanced Materials Metrology and Life Sciences Torino I-10135 Italy
| |
Collapse
|
3
|
Critical clinical gaps in cancer precision nanomedicine development. J Control Release 2022; 345:811-818. [PMID: 35378214 DOI: 10.1016/j.jconrel.2022.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/18/2022]
Abstract
Active targeting strategy is adopted in nanomedicine for cancer treatment. Personalizing the nanomedicine in accordance with patients' omics, under the precision medicine platform, is met with challenges in targeting ligand and matrix material selection at nanoformulation stage. The past 5-year literatures show that the nanoparticulate targeting ligand and matrix material are not selected based upon the cancer omics profiles of patients. The expression of cancer cellular target receptors and metabolizing enzymes is primarily influenced by age, gender, race/ethnic group and geographical origin of patients. The personalized perspective of a nanomedicine cannot be realised with premature digestion of matrix and targeting ligand by specific metabolizing enzymes that are overexpressed by the patients, and unmatched targeting ligand to the majority of cell surface receptors overexpressed in cancer. Omics analysis of individual metabolizing enzyme and cancer cell surface receptor expressed in cancer facilitates targeting ligand and matrix material selection in nanomedicine development.
Collapse
|
4
|
Zhang Z, Li D, Cao Y, Wang Y, Wang F, Zhang F, Zheng S. Biodegradable Hypocrellin B nanoparticles coated with neutrophil membranes for hepatocellular carcinoma photodynamics therapy effectively via JUNB/ROS signaling. Int Immunopharmacol 2021; 99:107624. [PMID: 34343939 DOI: 10.1016/j.intimp.2021.107624] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is an inflammation-induced and chemotherapy-resistant common liver cancer, and a major cause of death. Some natural products have been found to be used as photosensitizers in photodynamic therapy of HCC. Due to its specific molecular structure diversities and biological activities, current status of HCC treatment with nature production remains unsatisfactory, owing largely to the toxicity, side effect and inefficiency to drug targeting. Herein, we show a nanoparticle-based broad-spectrum anti-inflammatory strategy that naïve neutrophil membrane-coated PLGA nanoparticles (NM-HB NPs) were constructed for synchronous nearinfrared fluorescence (NIR FL) imaging and photodynamic therapy (PDT) for HCC. Moreover, NM-HB NPs inhibited the expression of JUNB and promoted the ROS production. JUNB depletion enhanced the anti-HCC effect of NM-HB NPs. Importantly, it was shown that NM-HB NPs are well targeted to the tumor site and overcomes the blood circulation and immune elimination in vivo and vitro. In a mouse model of HCC, the neutrophil membrane-coated nanoparticles (NM-HB NPs) show significant therapeutic efficacy by PDT and suppressing tumor tissue increase. All results demonstrated that NM coated HB NPs representing a viable and effective treatment option for HCC.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dan Li
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yiming Cao
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yupeng Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Marć M, Drzewiński A, Wolak WW, Najder-Kozdrowska L, Dudek MR. Filtration of Nanoparticle Agglomerates in Aqueous Colloidal Suspensions Exposed to an External Radio-Frequency Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1737. [PMID: 34361123 PMCID: PMC8307179 DOI: 10.3390/nano11071737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/07/2022]
Abstract
The study investigated the phenomenon of the fast aggregation of single-domain magnetic iron oxide nanoparticles in stable aqueous colloidal suspensions due to the presence of a radio-frequency (RF) magnetic field. Single-domain nanoparticles have specific magnetic properties, especially the unique property of absorbing the energy of such a field and releasing it in the form of heat. The localized heating causes the colloid to become unstable, leading to faster agglomeration of nanoparticles and, consequently, to rapid sedimentation. It has been shown that the destabilization of a stable magnetic nanoparticle colloid by the RF magnetic field can be used for the controlled filtration of larger agglomerates of the colloid solution. Two particular cases of stable colloidal suspensions were considered: a suspension of the bare nanoparticles in an alkaline solution and the silica-stabilized nanoparticles in a neutral solution. The obtained results are important primarily for biomedical applications and wastewater treatment.
Collapse
Affiliation(s)
| | - Andrzej Drzewiński
- Institute of Physics, University of Zielona Góra, ul. Szafrana 4a, 65-069 Zielona Góra, Poland; (M.M.); (W.W.W.); (L.N.-K.); (M.R.D.)
| | | | | | | |
Collapse
|
6
|
Mohapatra DK, Camp PJ, Philip J. Influence of size polydispersity on magnetic field tunable structures in magnetic nanofluids containing superparamagnetic nanoparticles. NANOSCALE ADVANCES 2021; 3:3573-3592. [PMID: 36133709 PMCID: PMC9419785 DOI: 10.1039/d1na00131k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/23/2021] [Indexed: 06/01/2023]
Abstract
We probe the influence of particle size polydispersity on field-induced structures and structural transitions in magnetic fluids (ferrofluids) using phase contrast optical microscopy, light scattering and Brownian dynamics simulations. Three different ferrofluids containing superparamagnetic nanoparticles of different polydispersity indices (PDIs) are used. In a ferrofluid with a high PDI (∼0.79), thin chains, thick chains, and sheets are formed on increasing the in-plane magnetic field, whereas isotropic bubbles, and hexagonal and lamellar/stripe structures are formed on increasing the out-of-plane magnetic field over the same range. In contrast, no field-induced aggregates are seen in the sample with low polydispersity under the above conditions. In a polydisperse sample, bubbles are formed at a very low magnetic field strength of 30 G. Insights into the structural evolution with increasing magnetic field strength are obtained by carrying out Brownian dynamics simulations. The crossovers from isotropic, through hexagonal columnar, to lamellar/stripe structures observed with increasing field strength in the high-polydispersity sample indicate the prominent roles of large, more strongly interacting particles in structural transitions in ferrofluids. Based on the observed microstructures, a phase diagram is constructed. Our work opens up new opportunities to develop optical devices and access diverse structures by tuning size polydispersity.
Collapse
Affiliation(s)
- Dillip Kumar Mohapatra
- Smart Materials Section, Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI Kalpakkam-603102 India
| | - Philip J Camp
- School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ Scotland UK
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University 51 Lenin Avenue Ekaterinburg 620000 Russia
| | - John Philip
- Smart Materials Section, Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI Kalpakkam-603102 India
| |
Collapse
|
7
|
Lim Y, Noh SH, Shin TH, Lee JU, Lungerich D, Lee JH, Cheon J. Magnetothermally Activated Nanometer-level Modular Functional Group Grafting of Nanoparticles. NANO LETTERS 2021; 21:3649-3656. [PMID: 33856815 DOI: 10.1021/acs.nanolett.1c00770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticles with multifunctionality and high colloidal stability are essential for biomedical applications. However, their use is often hindered by the formation of thick coating shells and/or nanoparticle agglomeration. Herein, we report a single nanoparticle coating strategy to form 1 nm polymeric shells with a variety of chemical functional groups and surface charges. Under exposure to alternating magnetic field, nanosecond thermal energy pulses trigger a polymerization in the region only a few nanometers from the magnetic nanoparticle (MNP) surface. Modular coatings containing functional groups, according to the respective choice of monomers, are possible. In addition, the surface charge can be tuned from negative through neutral to positive. We adopted a coating method for use in biomedical targeting studies where obtaining compact nanoparticles with the desired surface charge is critical. A single MNP with a zwitterionic charge can provide excellent colloidal stability and cell-specific targeting.
Collapse
Affiliation(s)
- Yongjun Lim
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Hyun Noh
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Tae-Hyun Shin
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jung-Uk Lee
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Dominik Lungerich
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Hyun Lee
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinwoo Cheon
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Xu Y, Zheng H, Schumacher D, Liehn EA, Slabu I, Rusu M. Recent Advancements of Specific Functionalized Surfaces of Magnetic Nano- and Microparticles as a Theranostics Source in Biomedicine. ACS Biomater Sci Eng 2021; 7:1914-1932. [PMID: 33856199 DOI: 10.1021/acsbiomaterials.0c01393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magnetic nano- and microparticles (MNMPs) belong to a highly versatile class of colloids with actuator and sensor properties that have been broadly studied for their application in theranostics such as molecular imaging and drug delivery. The use of advanced biocompatible, biodegradable polymers and polyelectrolytes as MNMP coating materials is essential to ensure the stability of MNMPs and enable efficient drug release while at the same time preventing cytotoxic effects. In the past years, huge progress has been made in terms of the design of MNMPs. Especially, the understanding of coating formation with respect to control of drug loading and release kinetics on the molecular level has significantly advanced. In this review, recent advancements in the field of MNMP surface engineering and the applicability of MNMPs in research fields of medical imaging, diagnosis, and nanotherapeutics are presented and discussed. Furthermore, in this review the main emphasis is put on the manipulation of biological specimens and cell trafficking, for which MNMPs represent a favorable tool enabling transport processes of drugs through cell membranes. Finally, challenges and future perspectives for applications of MNMPs as theranostic nanomaterials are discussed.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - Huabo Zheng
- Department of Cardiology, Pulmonology, Angiology, and Intensive Care, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| | - David Schumacher
- Department of Anesthesiology, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Elisa Anamaria Liehn
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.,Department of Cardiology, Pulmonology, Angiology, and Intensive Care, University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.,Department of Pathology, Institute of Pathology "Victor Babes", Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen, Pauwelstr. 20, 52074 Aachen, Germany
| | - Mihaela Rusu
- Department of Pathology, Institute of Pathology "Victor Babes", Splaiul Independentei nr. 99-101, Sector 5, 050096 Bucharest, Romania.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany
| |
Collapse
|
9
|
A numerical investigation into the magnetic nanoparticles hyperthermia cancer treatment injection strategies. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Persano F, Batasheva S, Fakhrullina G, Gigli G, Leporatti S, Fakhrullin R. Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. J Mater Chem B 2021; 9:2756-2784. [PMID: 33596293 DOI: 10.1039/d0tb02957b] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inorganic materials, in particular nanoclays and silica nanoparticles, have attracted enormous attention due to their versatile and tuneable properties, making them ideal candidates for a wide range of biomedical applications, such as drug delivery. This review aims at overviewing recent developments of inorganic nanoparticles (like porous or mesoporous silica particles) and different nano-clay materials (like montmorillonite, laponites or halloysite nanotubes) employed for overcoming the blood brain barrier (BBB) in the treatment and therapy of major brain diseases such as Alzheimer's, Parkinson's, glioma or amyotrophic lateral sclerosis. Recent strategies of crossing the BBB through invasive and not invasive administration routes by using different types of nanoparticles compared to nano-clays and inorganic particles are overviewed.
Collapse
Affiliation(s)
- Francesca Persano
- University of Salento, Department of Mathematics and Physics, Via Per Arnesano 73100, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Gkantzou E, Chatzikonstantinou AV, Fotiadou R, Giannakopoulou A, Patila M, Stamatis H. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol Adv 2021; 51:107738. [PMID: 33775799 DOI: 10.1016/j.biotechadv.2021.107738] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
The ever-growing demand for cost-effective and innocuous biocatalytic transformations has prompted the rational design and development of robust biocatalytic tools. Enzyme immobilization technology lies in the formation of cooperative interactions between the tailored surface of the support and the enzyme of choice, which result in the fabrication of tremendous biocatalytic tools with desirable properties, complying with the current demands even on an industrial level. Different nanoscale materials (organic, inorganic, and green) have attracted great attention as immobilization matrices for single or multi-enzymatic systems. Aiming to unveil the potentialities of nanobiocatalytic systems, we present distinct immobilization strategies and give a thorough insight into the effect of nanosupports specific properties on the biocatalysts' structure and catalytic performance. We also highlight the development of nanobiocatalysts for their incorporation in cascade enzymatic processes and various types of batch and continuous-flow reactor systems. Remarkable emphasis is given on the application of such nanobiocatalytic tools in several biocatalytic transformations including bioremediation processes, biofuel production, and synthesis of bioactive compounds and fine chemicals for the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Elena Gkantzou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Alexandra V Chatzikonstantinou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Archontoula Giannakopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
12
|
Barrera G, Allia P, Tiberto P. Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach. NANOSCALE 2021; 13:4103-4121. [PMID: 33570053 DOI: 10.1039/d0nr07397k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rate equations are used to study the dynamic magnetic properties of interacting magnetite nanoparticles viewed as double well systems (DWS) subjected to a driving field in the radio-frequency range. Dipole-dipole interaction among particles is modeled by inserting an ad-hoc term in the energy barrier to simulate the dependence of the interaction on both the interparticle distance and degree of dipole collinearity. The effective magnetic power released by an assembly of interacting nanoparticles dispersed in a diamagnetic host is shown to be a complex function of nanoparticle diameter, mean particle interdistance and frequency. Dipolar interaction markedly modifies the way a host material is heated by an assembly of embedded nanoparticles in magnetic hyperthermia treatments. Nanoparticle fraction and strength of the interaction can dramatically influence the amplitude and shape of the heating curves of the host material; the heating ability of interacting nanoparticles is shown to be either improved or reduced by their concentration in the host material. A frequency-dependent cut-off length of dipolar interactions is determined and explained. Particle polydispersity entailing a distribution of particle sizes brings about non-trivial effects on the heating curves depending on the strength of dipolar interaction.
Collapse
Affiliation(s)
- Gabriele Barrera
- INRIM, Advanced Materials Metrology and Life Sciences, Strada delle Cacce 91, I-10135 Torino, Italy.
| | - Paolo Allia
- INRIM, Advanced Materials Metrology and Life Sciences, Strada delle Cacce 91, I-10135 Torino, Italy.
| | - Paola Tiberto
- INRIM, Advanced Materials Metrology and Life Sciences, Strada delle Cacce 91, I-10135 Torino, Italy.
| |
Collapse
|
13
|
Barrera G, Allia P, Tiberto P. Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms. NANOSCALE ADVANCES 2020; 2:4652-4664. [PMID: 36132915 PMCID: PMC9417573 DOI: 10.1039/d0na00358a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Applying trapezoidal driving-field waveforms to activate magnetic nanoparticles optimizes their performance as heat generators in magnetic hyperthermia, with notable advantages with respect to the effects of harmonic magnetic fields of the same frequency and amplitude. A rate equation approach is used to determine the hysteretic properties and the power released by monodisperse and polydisperse magnetite nanoparticles with randomly oriented easy axes subjected to a radio-frequency trapezoidal driving field. The heating ability of the activated nanoparticles is investigated by means of a simple model in which the heat equation is solved in radial geometry with boundary conditions simulating in vivo applications. Changes of the inclination of the trapezoidal waveform's lateral sides are shown to induce controlled changes in the specific loss power generated by the activated nanoparticles. Specific issues typical of the therapeutic practice of hyperthermia, such as the need for fine tuning of the optimal treatment temperature in real time, the possibility of combining sequential treatments at different temperatures, and the ability to substantially reduce the heating transient in a hyperthermia treatment are suitably addressed and overcome by making use of versatile driving fields of a trapezoidal shape.
Collapse
Affiliation(s)
- Gabriele Barrera
- INRIM, Advanced Materials Metrology and Life Sciences Strada delle Cacce 91 I-10135 Torino Italy +39 011 3919858
| | - Paolo Allia
- INRIM, Advanced Materials Metrology and Life Sciences Strada delle Cacce 91 I-10135 Torino Italy +39 011 3919858
| | - Paola Tiberto
- INRIM, Advanced Materials Metrology and Life Sciences Strada delle Cacce 91 I-10135 Torino Italy +39 011 3919858
| |
Collapse
|
14
|
Pashchenko AV, Liedienov NA, Fesych IV, Li Q, Pitsyuga VG, Turchenko VA, Pogrebnyak VG, Liu B, Levchenko GG. Smart magnetic nanopowder based on the manganite perovskite for local hyperthermia. RSC Adv 2020; 10:30907-30916. [PMID: 35516065 PMCID: PMC9056338 DOI: 10.1039/d0ra06779b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
For many medical applications related to diagnosis and treatment of cancer disease, hyperthermia plays an increasingly important role as a local heating method, where precise control of temperature and parameters of the working material is strongly required. Obtaining a smart material with "self-controlled" heating in a desirable temperature range is a relevant task. For this purpose, the nanopowder of manganite perovskite with super-stoichiometric manganese has been synthesized, which consists of soft spherical-like ferromagnetic nanoparticles with an average size of 65 nm and with a narrow temperature range of the magnetic phase transition at 42 °C. Based on the analysis of experimental magnetic data, a specific loss power has been calculated for both quasi-stable and relaxation hysteresis regions. It has been shown that the local heating of the cell structures to 42 °C may occur for a short time (∼1.5 min.) Upon reaching 42 °C, the heating is stopped due to transition of the nanopowder to the paramagnetic state. The obtained results demonstrate the possibility of using synthesized nanopowder as a smart magnetic nanomaterial for local hyperthermia with automatic heating stabilization in the safe range of hyperthermia without the risk of mechanical damage to cell structures.
Collapse
Affiliation(s)
- A V Pashchenko
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
- Ivano-Frankivsk National Technical University of Oil and Gas, MESU 76019 Ivano-Frankivsk Ukraine
| | - N A Liedienov
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
| | - I V Fesych
- Taras Shevchenko National University of Kyiv 01030 Kyiv Ukraine
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
| | - V G Pitsyuga
- Vasyl' Stus Donetsk National University 21021 Vinnytsia Ukraine
| | - V A Turchenko
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research 141980 Dubna Russia
| | - V G Pogrebnyak
- Ivano-Frankivsk National Technical University of Oil and Gas, MESU 76019 Ivano-Frankivsk Ukraine
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
| | - G G Levchenko
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
| |
Collapse
|
15
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
16
|
Vilas-Boas V, Carvalho F, Espiña B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020; 25:E2874. [PMID: 32580417 PMCID: PMC7362219 DOI: 10.3390/molecules25122874] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic hyperthermia (MHT) is being investigated as a cancer treatment since the 1950s. Recent advancements in the field of nanotechnology have resulted in a notable increase in the number of MHT studies. Most of these studies explore MHT as a stand-alone treatment or as an adjuvant therapy in a preclinical context. However, despite all the scientific effort, only a minority of the MHT-devoted nanomaterials and approaches made it to clinical context. The outcome of an MHT experiment is largely influenced by a number of variables that should be considered when setting up new MHT studies. This review highlights and discusses the main parameters affecting the outcome of preclinical MHT, aiming to provide adequate assistance in the design of new, more efficient MHT studies.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|